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Abstract

This thesis explores the knowledge representation and the reasoning system for in-
complete and inconsistent information. We treat non-classical logic rather than classical
two-valued logic as a tool for the reasoning basis, and as the knowledge representation,
we adopt the epistemic situation calculus, which is extended a classical situation calculus
language with epistemic logic.

For incomplete and inconsistent information, we assume that the concept of partiality and
overcompleteness play an essential role in both knowledge representation and reasoning. The
partiality and overcompletenss of information are the causes of incomplete or inconsistent
epistemic states on the knowledge and lead to uncertain and ambiguity interpretations for
the world.

We give a deduction system based on the partial semantics and to apply the deduction
system with partial semantics to the granular reasoning. To connect the deduction system
and granular reasoning, we assume the decision logic and the decision table of rough set
theory as the bridge between the deduction system with many-valued logics and partial
semantics. As the first step, we present the deduction system for the partial semantics based
on the rough sets.

Rough set theory has been extensively used both as a mathematical foundation of gran-
ularity and vagueness in information systems and a large number of applications. However,
the decision logic for rough sets is based on classical bivalent logic; therefore, it would be
desirable to develop decision logic for uncertain, ambiguous and inconsistent objects. In
this study, a deduction system based on partial semantics is proposed for decision logic.
We propose Belnap’s four-valued semantics as the basis for three-valued and four-valued
logic to extend the deduction of decision logic since the boundary region of rough sets is
interpreted as both a non-deterministic and inconsistent state. We also introduce the conse-
quence relations to serve as an intermediary between rough sets and many-valued semantics.
Hence, consequence relations based on partial semantics for decision logic are defined, and
axiomatization by Gentzen-type sequent calculi is obtained. Furthermore, we extend the
sequent calculi with a weak implication to hold for a deduction theorem and also show a
soundness and completeness theorem for the four-valued logic for decision logic.

In Epistemic Situation Calculus called ES proposed by Lakemeyer and Levesque, by
assuming a situation as a possible world, it is possible to interpret an action as a kind of
modality. Moreover, since the state of knowledge of the agent is interpreted by the equiva-
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lence relation to the world after the action, knowledge representation based on granulation is
possible. In this thesis, we formalize granular reasoning in the epistemic situation calculus
by interpreting actions as modalities and granules of possible worlds as states. The zoom
reasoning proposed by Murai et al. is regarded as a cognitive action and is incorporated
into the ES as an abstracted and refined action by the granularity of the situation. The
relationship between rough sets and semantic interpretation based on Belnap’s four-valued
logic is given as a model of ES, and a model of ES with possible worlds and four-valued
logic is presented.

The key concept of the zooming reasoning system is a focus, which represents sentences
we use in the current step of reasoning. It provides “granularized” possible worlds, and a
four-valued valuation, where the truth value T means just told True, F means just told False,
N means told neither True nor False, and B means told both True and False. Besides, Murai
et al. have provided a mechanism of control of the degree of granularity,

We extend the possible world in the epistemic situation calculus to the concept of the
granularized possible world, and we incorporate the epistemic pattern of the abstraction and
the refinement with zooming reasoning as an action into ES syntactically.

Finally, we discuss the frame problem which was first proposed by J. McCarthy and
P. Haze [42], moreover, redefined as a generalized frame problem by Dennett [16] and
Matsubara [40, 41]. It is pointed out that the frame problem is not limited to AI and
robot, however, also to people. The frame problem is a question of how to process only
the necessary information from the information making up the world, and this is raised as
the first frame problem in the world’s description. The second problem is a frame problem
of the amount of processing of inference and is said as a problem due to processing with
partiality. This can be seen as a problem of difficulty in identifying problems related to the
subject of actions posed in the problem of Dennett’s robot example.

The fundamental problem with the description of the frame problem is expected to be
a problem of correspondence to partiality as pointed out by Matsubara [40]. We discuss
the essential problem behind the frame problem is dismissed with the approach from the
partiality and epistemic knowledge representation.
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Chapter 1

Introduction

1.1 Motivations and Objectives

Artificial intelligence is the research area of science and engineering for intelligent machines,
especially intelligent computer programs. One of the basic objectives is to study computer-
based advanced knowledge representation and reasoning for processing more complex tasks
than in the beginning.

This thesis explores the knowledge representation and the reasoning system for incom-
plete and inconsistent information. We treat non-classical logic rather than classical two-
valued logic as a tool for reasoning and knowledge representation, we adopt the epistemic
situation calculus called ES, which extends the classical situation calculus with epistemic
logic.

For incomplete and inconsistent information in knowledge representation and reasoning,
we assume that the concept of partiality and overcompleteness play an essential role. The
partiality and overcompleteness of information are causes of incomplete or inconsistent
epistemic states on the knowledge and lead to uncertain and ambiguity interpretations for
the world.

Reasoning for partial and inconsistent information inherits ambiguity, and uncertainty
results resulted from incompleteness and inconsistency. Such incompleteness and inconsis-
tency are caused by the lack of information and the excessiveness of information. The truth
of information represents an undecidable state when the contradicting information is added
to the consistent knowledge database.

In classical logic, sentences are either true or false, and it is assumed that at any time, every
sentence has exactly one of these two truth-values regardless of the available information
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1.1. Motivations and Objectives

about it. In knowledge representation, information is not complete. Therefore we need
non-classical logic as a model for reasoning with inconsistent and incomplete information.

We will treat here non-classical logic, also sometimes referred to as partial logic that
is needed in order to formulate and understand the proposed framework of knowledge
representation and reasoning.

The idea of our knowledge representation and reasoning concerns two main aspects of
artificial intelligence technology: cognitive adequacy and computational feasibility. The
goal is to develop an appropriate methodology for knowledge representation and reasoning
system. The point of departure is the kind of knowledge representation achieved by the
epistemic situation calculus and reasoning system based on non-classical logic.

Non-classical logics can be classified into two classes. One class is a rival to clas-
sical logic, including intuitionistic logic and many-valued logic. The logics in this class
denies some principles of classical logic. For example, many-valued logic denies the two-
valuedness of classical logic, allowing several truth-values. Kleene’s three-valued logic does
not adopt the law of excluded middle A ∨ ¬A as an axiom.

Consequently, many-valued logic can deal with the features of information like degree
and vagueness. The second class is an extension of classical logic. The logics in this class
thus expands classical logic with some logical types of machinery. One of the most notable
logics in the class is modal logic, which extends classical logic with modal operators to
formalize the notions of necessity and possibility.

A lack of information and contradictory information is an epistemic state which is
captured similar to ambiguity or uncertainty, but the gap and glut should be treated as
distinguished. In the glut of information, the undecidability of the truth results from the lack
of information, so the contradiction also the problem of partiality of information.

Our position is that reasoning as a cognitive activity is based on the knowledge avail-
able to the cognitive agent through some form of representation. The goal of knowledge
representation (KR) in computer science is to improve the existing KR technology and
theory.

In real world, an agent makes judgments and draws a conclusion even if he does not
have complete information about a problem, and even if the information at hand contains
inconsistency. This kind of practical reasoning is distinct from standard deductive and
probabilistic reasoning which deals with exact predicates without truth-value gaps excluding
the possibility of incoherent information.

The aim is to establish a formal system which: 1. captures a practically relevant body
of cognitive facilities employed by humans which can be reasonably implemented, and 2.
extends the knowledge representation and reasoning capabilities of humans by capitalizing
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1.2. Granular Reasoning for Frame Problem

on the technical strength of the system including formal techniques to master gluts (situations
where we are inclined to accept contradicting statements) and gaps (situations where we want
to draw a conclusion but are uncertain because of lack of information) in a principled way.

In this dissertation, we study how these fundamental theories - non-classical logics and
their deduction systems - can work for the reasoning in the situation calculus that includes
frame axioms for the frame problem. J. McCarthy and P. Hayes [42] first proposed the frame
problem, moreover, Dennett [16] and Matsubara [40, 41] redefined as a generalized frame
problem.

To enable ES obtain the feasible expression of an agent’s epistemic state finely, we expand
the epistemic situation calculus with zooming reasoning based on the granular reasoning.

To most AI researchers, the frame problem is the challenge of representing the effects of
action in logic with having to represent tractable. The frame problem is a question of how to
process only the necessary information from the information making up the world and this is
raised as the first frame problem in the world’s description. The second problem is a frame
problem of the amount of processing of inference and is said as a problem due to processing
with partiality. This can be seen as a problem of difficulty in identifying problems related
to the subject of actions posed in the problem of Dennett’s robot example.

The fundamental problem on the descriptiveness of the frame problem is expected to be
a problem of correspondence to partiality as pointed out by Matsubara [40].

Our study does not aim to give a perfect solution for the frame problem, but we provide
the interpretation based on the partiality to the problem of description of the information,
which is considered as the cause of the frame problem. To consider the partiality of the
information, we give another interpretation to the frame problem.

1.2 Granular Reasoning for Frame Problem

In the frame problem, the fundamental problem is due to the impossibility of description
for the world and situation. For the frame problem was assumed to be based on a complete
description of requirement condition for actions; therefore, the truth-value in worlds as a
result of executing actions is needed to be interpreted as determinism. On the other hand,
granular reasoning is a reasoning framework based on the analytics method of information
considering the partiality and approximation, and the degree of validity.

In this thesis, we study the knowledge representation and reasoning for an agent in
the world with the partiality as the key concept. The aim of the study in this thesis is
that we cope with knowledge representation with incomplete and inconsistent information
adequately. Therefore we adopt many-valued logics and modal logics which are non-classical
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1.3. Organisation of material

logics, and rough set theory, that is for approximation data analysis as the semantic basis for
our non-classical logics. When we focus on the knowledge and the recognition of an agent,
we need to handle with partiality, ambiguity, vagueness, incompleteness and inconsistency.

This phenomenon cannot be captured with classical bivalence logic and we need plausible
and defeasible system as underlying theory. Partiality is the primary concern in the literary
of research of artificial intelligence, and it still is considered as a significant problem in this
field. To handle the partiality for knowledge representation, there are various approaches. In
this research, as a tool, we focus on the rough set theory, granular computing, many-valued
logics, modal logics. These theories and logics are related to mutual intimately.

1.3 Organisation of material

This thesis consists of two parts: one is about the deduction system with many-valued
logics and the other is about the granular reasoning in the epistemic situation calculus.
The deduction system treats non-classical logic as a basis for a deductive system for partial
information, and the granular reasoning is embedded in the ES as a reasoning based on
non-monotonic reasoning with partial semantics. The structure of this thesis is as follows.

In Chapter 2, we introduce the foundations for rough set theory. We outline Pawlak’s
motivating idea and give a technical exposition. Besides variable precision rough set model
is presented and some applications based on rough set theory. In addition, we describe
some non-classical logics. They are closely related to the foundations of rough set theory.
We provide the basics of modal and many-valued logic. In Chapter 3, we present the
consequence relation and Gentzen type sequent calculus for many-valued logics, and also
describe the partial semantics interpreted with rough sets. In Chapter 4, we present another
deduction system based on tableaux calculus for four-valued logic and introduction to the
analytic tableau as a basis for an automated deductive system. In Chapter 6, we describe
the essential concern behind the frame problem and discuss our point of view for the frame
problem. In Chapter 7, we present the Conclusion.
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Chapter 2

Preliminary

2.1 Rough Sets Theory

This section describes the foundations for rough set theory. We outline Pawlak’s motivating
idea and give a technical exposition. Basics of Pawlak’s rough set theory and variable
precision rough set model are presented with some related topics. Rough set theory is
interesting theoretically as well as practically, and a quick survey on the subject, including
overview, history and applications, is helpful to the readers.

2.1.1 Pawlak’s Rough Sets Theory

Rough set theory, proposed by Pawlak [55], provides a theoretical basis of sets based on
approximation concepts. A rough set can be seen as an approximation of a set. These
approximations can be described by two operators on subsets of the universe. Rough set
theory is, in particular, helpful in extracting knowledge from data tables and it has been
successfully applied to the areas such as data analysis, decision making, machine learning
and other various applications.

We begin with an exposition of Pawlak’s approach to rough set theory based on Pawlak
[55]. His motivation is to provide a theory of knowledge and classification by introducing a
new concept of set, i.e., rough set.

By object, we mean anything we can think of, for example, real things, states, abstract
concepts, etc.. We can assume that knowledge is based on the ability to classify objects.
Thus, knowledge is necessarily connected with the variety of classification patterns related to
specific parts of the real or abstract world, called the universe of discourse (or the universe).
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2.1. Rough Sets Theory

Now, we turn to a formal presentation. We assume the usual notation for set theory. Let
U be non-empty finite set of objects called the universe of discourse. Any subset X ⊆ U of
the universe is called a concept or a category in U. Any family of concepts in U is called
knowledge about U. Note that the empty set ∅ is also a concept.

We mainly deal with concepts which form a partition (classification) of a certain universe
U, i.e. in families C = {X1, X2, . . . , Xn} such that Xi ⊆ U, Xi , ∅, Xi ∩ X j , ∅ for
i , j, i, j = 1, . . . , n and

∪
Xi = U. A family of classifications over U is called a knowledge

base over U.
Classifications can be specified by using equivalence relations. If R is an equivalence

relation over U, then U/R means the family of all equivalence classes of R (or classification
of U) referred to as categories or concepts of R. [x]R denotes a category in R containing an
element x ∈ U.

A knowledge base is defined as a relational system, K = (U,R), where U , ∅ is a finite
set called the universe, and R is a family of equivalence relations over U. IND(K) means
the family of all equivalence relations defined in K , i.e., IND(K) = {IND(P)|∅ , P ⊆ R}.
Thus, IND(K) is the minimal set of equivalence relations, containing all elementary relations
of K , and closed under set-theoretical intersection of equivalence relations.

If P ⊆ R and P , ∅, then ∩P denotes the intersection of all equivalence relations
belonging to P, denoted IND(P), called an indiscernibility relation of P. It is also an
equivalence relation, and satisfies:

[x]IND(P) =
∩
R∈P

[x]R.

Thus, the family of all equivalence classes of the equivalence relation IND(P), i.e.,
U/IND(P) denotes knowledge associated with the family of equivalence relations P. For
simplicity, we will write U/P instead of U/IND(P).

P is also called P-basic knowledge. Equivalence classes of IND(P) are called basic
categories (concepts) of knowledge P. In particular, if Q ∈ R, then Q is called a Q-
elementary knowledge (about U in K) and equivalence classes of Q are referred to as
Q-elementary concepts (categories) of knowledge R.

Now, we describe the fundamentals of rough sets. Let X ⊆ U and R be an equivalence
relation. We say that X is R-definable if X is the union of some R-basic categories; otherwise
X is R-undefinable.

The R-definable sets are those subsets of the universe which can be exactly defined in the
knowledge base K , whereas the R-undefinable sets cannot be defined in K . The R-definable
sets are called R-exact sets, and R-undefinable sets are called R-inexact or R-rough.
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2.1. Rough Sets Theory

Set X ⊆ U is called exact in K if there exists an equivalence relation R ∈ IND(K) such
that X is R-exact, and X is said to be rough in K if X is R-rough for any R ∈ IND(K).

Observe that rough sets can be also defined approximately by using two exact sets,
referred as a lower and an upper approximation of the set. Rough set theory is outlined
below.

Definition 2.1. A knowledge base K is a pair K = (U, R), where U is a universe of objects,
and R is a set of equivalence relations on the objects in U.

Definition 2.2. Let R ∈ R be an equivalence relation of the knowledge base K = (U, R) and
X any subset of U. Then, the lower and upper approximations of X for R are defined as
follows:

RX =
∪{Y∈ U/R | Y ⊆ X},

RX =
∪{Y∈ U/R | Y ∩ X , 0}.

RX is called the R-lower approximation and RX the R-upper approximation of X, respec-
tively. They will be simply called the lower-approximation and the upper-approximation if
the context is clear.

It is also possible to define the lower and upper approximation in the following two
equivalent forms:

RX = {x ∈ U | [x]R ⊆ X},

RX = {x ∈ U | [x]R ∩ X, ∅}.
or

x ∈ RX iff [x]R ⊆ X ,
x ∈ RX iff [x]R ∩ X , ∅.
The above three are interpreted as follows. The set RX is the set of all elements of U

which can be certainly classified as elements of X in the knowledge R. The set RX is the
set of elements of U which can be possibly classified as elements of X in R.

We define R-positive region (POSR(X)), R-negative region (NEGR(X)), and R-borderline
region (BNR(X)) of X as follows:

Definition 2.3. If K = (U, R), R ∈ R, and X ⊆ U, then the R-positive, R-negative, and
R-boundary regions of X with respect to R are defined respectively as follows:

POSR(X) = RX,

NEGR(X) = U − RX,

BNR(X) = RX − RX .

7
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The positive region POSR(X) (or the lower approximation) of X is the collection of those
objects which can be classified with full certainty as members of the set X , using knowledge
R.

The negative region NEGR(X) is the collection of objects with which it can be determined
without any ambiguity, employing knowledge R, that they do not belong to the set X , that
is, they belong to the complement of X .

The borderline region BNR(X) is the set of elements which cannot be classified either to
X or to −X in R. It is the undecidable area of the universe, i.e., none of the objects belonging
to the boundary can be classified with certainty into X or −X as far as R is concerned.

Now, we list basic formal results. Their proofs may be found in Pawlak [55]. Proposition
2.1 is obvious.

Proposition 2.1. The following hold:

1. X is R-definable iff RX = RX

2. X is rough with respect to RX , RX

Proposition 2.2 shows the basic properties of approximations:

Proposition 2.2. The R-lower and R-upper approximations satisfy the following properties:

1. RX ⊆ X ⊆ RX

2. R∅ = R∅ = ∅, RU = RU = U

3. R(X ∪ Y ) = RX ∪ RY

4. R(X ∩ Y ) = RX ∩ RY

5. X ⊆ Y implies RX ⊆ RY

6. X ⊆ Y implies RX ⊆ RY

7. R(X ∪ Y ) ⊆ RX ∪ RY

8. R(X ∩ Y ) ⊆ RX ∩ RY

9. R(−X) = −RX

10. R(−X) = −RX

11. RRX = RRX = RX

12. RRX = RRX = RX

The concept of approximations of sets can be also applied to that of membership relation.
In rough set theory, since the definition of a set is associated with knowledge about the set,
a membership relation must be related to the knowledge.

8
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Then, we can define two membership relations ∈R and ∈R. x∈R reads “x surely belongs to
X” and x∈R reads “x possibly belongs to X”. ∈R and ∈R are called the R-lower membership
and R-upper membership, respectively.

Proposition 2.3 states the basic properties of membership relations:

Proposition 2.3. The R-lower and R-upper membership relations satisfy the following
properties:

1. x∈RX implies x ∈ X implies x∈R

2. X ⊆ Y implies (x∈RX implies x∈RY and x∈RX implies x∈RY )
3. x∈R(X ∪ Y ) iff x∈RX or x∈RY

4. x∈R(X ∩ Y ) iff x∈RX and x∈RY

5. x∈RX or x∈RY implies x∈R(X ∪ Y )
6. x∈R(X ∩ Y ) implies x∈RX and x∈RY

7. x∈R(−X) iff non x∈RX

8. x∈R(−X) iff non x∈RX

Approximate (rough) equality is the concept of equality in rough set theory. Three kinds
of approximate equality can be introduced. Let K = (U,R) be a knowledge base, X,Y ⊆ U
and R ∈ IND(K).

1. Sets X and Y are bottom R-equal (X∼RY ) if RX = RY

2. Sets X and Y are top R-equal (X ≃R Y ) if RX = RY

3. Sets X and Y are R-equal (X ≈R Y ) if (X∼RY ) and (X ≃R Y )

These equalities are equivalence relations for any indiscernibility relation R. They are
interpreted as follows: X∼RY means that positive example of the sets X and Y are the same,
(X ≃R Y ) means that negative example of the sets X and Y are the same, and (X ≈R Y )
means that both positive and negative examples of X and Y are the same.

These equalities satisfy the following proposition (we omit subscript R for simplicity):

Proposition 2.4. For any equivalence relation, we have the following properties:

1. (1) X ∼ Y iff X ∩ X ∼ Y and X ∩ Y ∼ Y

2. X ≃ Y iff X ∪ Y ≃ X and X ∪ Y ≃ Y

3. If X ≃ X′ and Y ≃ Y ′, then X ∪ Y ≃ X′ ∪ Y ′

4. If X ∼ X′ and Y ∼ Y ′, then X ∩ Y ∼ X′ ∩ Y ′

5. If X ≃ X′Y , then X ∪ −Y ≃ U

9
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6. If X ∼ Y , then X ∩ −Y ∼ ∅
7. If X ⊆ Y and Y ≃ ∅, then X ≃ ∅
8. If X ⊆ Y and Y ≃ U, then X ≃ U

9. X ≃ Y iff −X ∼ − Y

10. If X ∼ ∅ or Y ∼ ∅, then X ∩ Y ∼ ∅
11. If X ≃ U or Y ≃ U, then X ∪ Y ≃ U.

The following proposition 2.5 shows that lower and upper approximations of sets can be
expressed by rough equalities:

Proposition 2.5. For any equivalence relation R:

1. RX is the intersection of all Y ⊆ U such that X ∼R Y

2. RX is the union of all Y ⊆ U such that X ≃R Y .

Similarly, we can define rough inclusion of sets. It is possible to define three kinds of
rough inclusions.

Let X = (U,R) be a knowledge base, X,Y ⊆ U, and R ∈ IND(K). Then, we have:

1. Set X is bottom R-included in Y (X ⊂∼R
Y ) iff RX ⊆ RY

2. Set X is top R-included in Y (X ⊂∼R Y ) iff RX ⊆ RY

3. Set X is R-included in Y (X ⊂
∼
∼R

Y ) iff (X ⊂∼R
Y ) and (X ⊂∼R Y )

Note that ⊂∼R
, ⊂∼R and ⊂∼R

are quasi ordering relations. They are called the lower, upper
and rough inclusion relation, respectively. Observe that rough inclusion of sets does not
imply the inclusion of sets.

The following proposition shows the properties of rough inclusion:

Proposition 2.6. Rough inclusion satisfies the following:

1. If X ⊆ Y , then X ⊂∼R
Y, X ⊂∼R and X ⊂∼R

Y

2. if X ⊂∼R
Y and Y ⊂∼R

X , then X ∼ Y

3. If X ⊂∼R Y , and Y ⊂∼R X , then X ≃ Y

4. If X ⊂∼R
Y and Y ⊂∼R

X , then X ≈ Y

5. If X ⊂∼R Y iff X ∪ Y ≃ Y

6. If X ⊂∼R
Y iff X ∩ Y ∼ Y

7. If X ⊆ Y , X ∼ X′ and Y ∼ Y ′, then X′ ⊂∼R
Y ′

10
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8. If X ⊆ Y , X ≃ X′ and Y ≃ Y ′, then X′ ⊂∼R Y ′

9. If X ⊆ Y , X ≈ X′ and Y ≈ Y ′, then X ⊂∼R
Y ′

10. If X′ ⊂∼R X and Y ′ ⊂∼R Y , then X′ ∪ Y ′ ⊂∼R X ∪ Y

11. X′⊂∼R
X and Y ′⊂∼R

Y , then X′ ∩ Y ′⊂∼R
X ∩ Y

12. X ∩ Y ⊂∼R
Y ⊂∼R X ∪ Y

13. If X⊂∼R
Y and X ∼ Z , then Z⊂∼R

Y

14. If X⊂∼R Y and X ≃ Z , then Z ⊂∼R Y

15. If X⊂∼R
Y and X ≈ Z , then Z ⊂∼R

Y

The above properties are not valid if we replace ∼ by ≃ (or conversely). If R is an
equivalence relation, then all three inclusions reduce to ordinary inclusion.

2.1.2 Variable Precision Rough Set

Ziarko generalized Pawlak’s original rough set model in Ziarko [68], which is called the
variable precision rough set model (VPRS model) to overcome the inability to model
uncertain information, and is directly derived from the original model without any additional
assumptions. In addition, VPRS model are one extension of Pawlak’s rough set theory, which
provides a theoretical basis to treat probabilistic or inconsistent information in the framework
of rough sets.

VPRS model generalizes the standard set inclusion relation, capable of allowing for some
degree of misclassification in the largely correct classification.

Let X and Y be non-empty subsets of a finite universe U. X is included in Y , denoted
Y ⊇ X , if for all e ∈ X implies e ∈ Y . Here, we introduce the measure c(X,Y ) of the relative
degree of misclassification of the set X with respect to set Y defined as:

c(X,Y ) =def


1 − |X ∩ Y |

|X | , if X , ∅,

0, otherwise.

, where |X | represents the cardinality of the set X .
VPRS is based on the majority inclusion relation. Let X , Y ⊆ U be any subsets of U.

The majority inclusion relation is defined by the following measure c(X,Y ) of the relative
degree of misclassification of X with respect to Y .

We can define the inclusion relationship between X and Y without explicitly using a
general quantifier:

X ⊆ Y iff c(X,Y ) = 0

11
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The majority requirement implies that more than 50% of X elements should be in
common with Y . The specified majority requirement imposes an additional requirement.
The number of elements of X in common with Y should be above 50% and not below a
certain limit, e.g. 85%.

Formally, the majority inclusion relation
β
⊆ with a fixed precision β ∈ [0, 0.5) is defined

using the relative degree of misclassification as follows:

X
β
⊆ Y iff c(X,Y ) ≤ β

,where the precision b provides the limit of permissible misclassification.
The above definition covers the whole family of β-majority relation. However, the

majority inclusion relation does not have the transitivity relation.
The following two propositions indicate some useful properties of the majority inclusion

relation:

Proposition 2.7. If A ∩ B = ∅ and B
β
⊇ X , then it is not true that A

β
⊇ X .

Proposition 2.8. If β1 < β2, then Y
β2⊇ X implies Y

β2⊇ X .

For the VPRS-model, we define the approximation space as a pair A = (U, R), where
U is a non-empty finite universe and R is the equivalence relation on U. The equivalence
relation R, referred to as an indiscernibility relation, corresponds to a partitioning of the
universe U into a collection of equivalence classes or elementary set R′ = {E1, E2, . . . , En}.

Using a majority inclusion relation instead of the inclusion relation, we can obtain
generalized notions of β-lower approximation (or β-positive region POSRβ(X)) of the set
U ⊇ X:

RβX =
∪{E ∈ R∗ : X

β
⊇ E} or, equivalently,

RβX =
∪{E ∈ R∗ : c(E, X) ≤ β}

The β-upper approximation of the set U ⊇ X can be also defined as follows:
RβX =

∪{E ∈ R∗ : c(E, X) < 1 − β}
The β-boundary region of a set is given by

BNRβX =
∪{E ∈ R∗ : β < c(E, X) < 1 − β}.

The β-negative region of X is defined as a complement of the β-upper approximation:
NEGRβX =

∪{E ∈ R∗ : c(E, X) ≥ 1 − β}.
The lower approximation of the set X can be interpreted as the collection of all those

elements of U which can be classified into X with the classification error not greater than β.
The β-negative region of X is the collection of all those elements of U which can be

classified into the complement of X , with the classification error not greater than β. The
latter interpretation follows from Proposition 2.9:

12
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Proposition 2.9. For every X ⊆ Y , the following relationship is satisfied:
POSRβ(−X) = NEGRβX .

The β-boundary region of X consists of all those elements of U which cannot be classified
either into X or into −X with the classification error not greater than β.

Notice here that the law of excluded middle, i.e., p ∨ ¬p, where ¬p is the negation of p,
holds in general for imprecisely specified sets.

Finally, the β-upper approximation RβX of X includes all those elements of U which
cannot be classified into −X with the error not greater than β. If β = 0 then the original
rough set model is a special case of VPRS-model, as the following proposition states:

Proposition 2.10. Let X be an arbitrary subset of the universe U:

1. R0X = RX , where RX is a lower approximation defined as RX =
∪{E ∈ R∗ : X ⊇ E}

2. R0X = RX , where RX is an upper approximation defined as RX =
∪{E ∈ R∗ :

E ∩ X , ∅}
3. BNR0X = BNRX , where BNRX is the set X boundary region defined as BNRX =

RX − RX

4. NEGR0X = NEGRX , where NEGRX is the set X negative region defined as
NEGRX = U − RX

In addition, we have the following proposition:

Proposition 2.11. If 0 ≤ β < 0.5 then the properties listed in Proposition 2.18 and the
following are also satisfied:

RβX ⊇ RX ,
RX ⊇ RβX ,
BNRX ⊇ BNRβX ,
NEGRβX ⊇ NEGRX .

Intuitively, with the decrease of the classification error β the size of the positive and
negative regions of X will shrink, whereas the size of the boundary region will grow.

With the reduction of β fewer elementary sets will satisfy the criterion for inclusion in
β-positive or β-negative regions. Thus, the size of the boundary will increase. The reverse
process can be done with the increase of β.

Proposition 2.12. With the β approaching the limit 0.5, i.e., β → 0.5, we obtain the
following:

RβX → R0.5X =
∪{E ∈ R∗ : c(E, X) < 0.5},

13
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RβX → R0.5X =
∪{E ∈ R∗ : c(E, X) ≤ 0.5},

BNRβX → BNR0.5X =
∪{E ∈ R∗ : c(E, X) = 0.5},

NEGRβX → NEGR0.5X =
∪{E ∈ R∗ : c(E, X) > 0.5}.

The set BNR0.5X is called an absolute boundary of X because it is included in every other
boundary region of X . The following Proposition 2.13 summarizes the primary relationships
between set X discernibility regions computed on 0.5 accuracy level and higher levels.

Proposition 2.13. For boundary regions of X, the following hold:
BRN0.5X =

∩
β

BNRβX ,

R0.5X =
∩
β

RβX ,

R0.5X =
β∩

RβX ,

NEGR0.5X =
β∩

NEGRβX .

The absolute boundary is very “narrow”, consisting only of those sets which have 50/50
aplite of elements among set X interior and its exterior. All other elementary sets are
classified either into positive region R0.5X or the negative region NEGR0.5.

We turn to the measure of approximation. To express the degree with which a set X
can be approximately characterized by means of elementary sets of the approximation space
A = (U, R), we will generalize the accuracy measure introduced in Pawlak [54].

The β-accuracy for 0 ≤ β < 0.5 is defined as

α(R, β, X) = card(RβX)/card(RβX).

The β-accuracy represents the imprecision of the approximate characterization of the set
X relative to assumed classification error β.

Note that with the increase of β the cardinality of the β-upper approximation will tend
downward and the size of the β-lower approximation will tend upward which leads to the
conclusion that is consistent with intuition that relative accuracy may increase at the expense
of a higher classification error.

The notion of discernibility of set boundaries is relative. If a large classification error is
allowed then the set X can be highly discernible within assumed classification limits. When
smaller values of the classification tolerance are assumed it may become more difficult to
discern positive and negative regions of the set to meet the narrow tolerance limits.

The set X is said to be β-discernible if its β-boundary region is empty or, equivalently, if

RβX = RβX
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.
For the β-discernible sets the relative accuracy α(R, β, X) is equal to unity. The dis-

cernible status of a set change depending on the value of β. In general, the following
properties hold:

Proposition 2.14. If X is discernible on the classification error level 0 ≤ β < 0.5, then X
is also discernible at any level β1 > β.

Proposition 2.15. If R0.5X , R0.5X , then X is not discernible on every classification error
level 0 ≤ β < 0.5.

Proposition 2.16 emphasizes that a set with a non-empty absolute boundary can never
be discerned. In general, one can easily demonstrate the following:

Proposition 2.16. If X is not discernible on the classification error level 0 ≤ β < 0.5, then
X is also not discernible at any level β1 < β.

Any set X which is not discernible for every β is called indiscernible or absolutely rough.
The set X is absolutely rough iff BNR0.5X , ∅. Any set which is not absolutely rough will
be referred to as relatively rough or weakly discernible.

For each relatively rough set X , there exists such a classification error level β that X is
discernible on this level.

Let NDIS(R, X) = {0 ≤ β < 0.5 : BNRβ(X) , ∅}. Then, NDIS(R, X) is a range of all
those β values for which X is indiscernible.

The least value of classification error β which makes X discernible will be referred to as
discernibility threshold. The value of the threshold is equal to the least upper bound ζ(R, X)
of NDIS(X), i.e.,

ζ(R, X) = supNDIS(R, X).

Proposition 2.17 states a simple property which can be used to find the discernibility
threshold of a weakly discernible set X:

Proposition 2.17. ζ(R, X) = max(m1,m2), where
m1 = 1 − min{c(E, X) : E ∈ R∗ and 0.5 < c(E, X)}, m2 = max{c(E, X) : E ∈ R∗ and

c(E, X) < 0.5}.

The discernibility threshold of the set X equals a minimal classification error β which
can be allowed to make this set β-discernible. We give some fundamental properties of
β-approximations.
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Proposition 2.18. For every 0 ≤ β < 0.5, the following hold:

(1a) X ⊇
β

RβX

(1b) RβX ⊇ RβX

(2) Rβ∅ = Rβ∅ = ∅; RβU = RβU = U

(3) Rβ(X ∪ Y ) ⊇ RβX ∪ RβY

(4) RβX ∩ RβY ⊇ Rβ(X ∩ Y )
(5) Rβ(X ∪ Y ) ⊇ Rβ ∪ RβY

(6) RβX ∩ RβY ⊇ Rβ(X ∩ Y )
(7) Rβ(−X) = −Rβ(X)
(8) Rβ(−X) = −Rβ(X)

We finish the outline of variable precision rough set model, which can be regarded as a
direct generalization of the original rough set model. Consult Ziarko [68] for more details.
As we will be discussed later, it plays an important role in our approach to rough set based
reasoning.

Shen and Wang [62] proposed the VPRS model over two universes using inclusion
degree. They introduced the concepts of the reverse lower and upper approximation oper-
ators and studied their properties. They introduced the approximation operators with two
parameters as a generalization of the VPRS-model over two universes.

2.1.3 Decision Logic

Pawlak developed decision logic (DL) for reasoning about knowledge. His main goal is
reasoning about knowledge concerning reality. Knowledge is represented as a value-attribute
table, called knowledge representation system.

There are several advantages to represent knowledge in tabular form. The data table can
be interpreted differently, namely it can be formalized as a logical system. The idea leads to
decision logic.

We review the foundations of rough set-based decision logic [55, 56]. Let S = (U, A) be
a knowledge representation system.

The language of DL consists of atomic formulas, which are attribute-value pairs, com-
bined by logical connectives to form compound formulas. The alphabet of the language
consists of:

1. A: the set of attribute constants
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2. V =
∪

Va: the set of attribute constants a ∈ A

3. Set {∼,∨,∧,→,≡} of propositional connectives, called negation, disjunction, con-
junction, implication and equivalence, respectively.

The set of formulas in DL-language is the least set satisfying the following conditions:

1. Expressions of the form (a, v), or in short av, called atomic formulas, are formulas of
DL-language for any a ∈ A and v ∈ Va.

2. If ϕ and ψ are formulas of DL-language, then so are ∼, ϕ, (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ → ψ)
and (ϕ ≡ ψ).

Formulas are used as descriptions of objects of the universe. In particular, atomic
formula of the form (a, v) is interpreted as a description of all objects having value v for
attribute a.

Formulas are used as descriptions of objects of the universe. In particular, atomic
formula of the form (a, v) is interpreted as a description of all objects having value v for
attribute a.

The semantics for DL is given by a model. For DL, the model is KR-system S = (U, A),
which describes the meaning of symbols of predicates (a, v) in U, and if we properly interpret
formulas in the model, then each formula becomes a meaningful sentence, expressing
properties of some objects.

An object x ∈ U satisfies a formula ϕ in S = (U, A), denoted x |=S ϕ or in short x |= ϕ,
iff the following conditions are satisfied:

1. x |=S (a, v) iff a(x) = v,

2. x |=S ∼φ iff x ̸ |=S φ,

3. x |=S φ ∨ ψ iff x |=S φ or x |=S ψ,

4. x |=S φ ∧ ψ iff x |=S φ and x |=S ψ,

5. x |=S φ → ψ iff x |=S ∼φ ∨ ψ,

6. x |=S φ ≡ ψ iff x |=S φ → ψ and s |=S ψ → φ.

If φ ∈ LDL is a formula then the set |φ|S defined as follows

|φ|S = {x ∈ U : x |=S φ}.

will be called the meaning of the formula φ in S.

Proposition 2.19. The meaning of arbitrary formulas satisfies the following:
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|(a, v)|S = {x ∈ U |a(x) = v}
|∼ϕ|S = −|ϕ|S
|ϕ ∨ ψ |S = |ϕ|S ∪ |ψ |S
|ϕ ∧ ψ |S = |ϕ|S ∩ |ψ |S
|ϕ → ψ |S = −|ϕ|S ∪ |ψ |S
|ϕ ≡ ψ |S = (|ϕ|S ∩ |ψ |S) ∪ (−|ϕ|S ∩ −|ψ |S)

Thus, the meaning of the formula ϕ is the set of all objects having the property expressed
by the formula ϕ, or the meaning of the formula ϕ is the description in the KR-language of
the set objects |ϕ|.

A formula ϕ is said to be true in a KR-system S, denoted |=S ϕ, iff |ϕ|S = U, i.e., the
formula is satisfied by all objects of the universe in the system S. Formulas ϕ and ψ are
equivalent in S iff |ϕ|S = |ψ |S.

Proposition 2.20. The following are the simple properties of the meaning of a formula.
|=S ϕ iff |ϕ| = U

|=S ∼ϕ iff |ϕ| = ∅
ϕ → ψ iff |ψ | ⊆ |ψ |
ϕ ≡ ψ iff |ψ | = |ψ |

Themeaning of the formula depends on the knowledge we have about the universe, i.e., on
the knowledge representation system. In particular, a formula may be true in one knowledge
representation system, but false in another one.

However, there are formulas which are true independent of the actual values of attributes
appearing them. But, they depend only on their formal structure.

Note that in order to find the meaning of such a formula, one need not be acquainted
with the knowledge contained in any specific knowledge representation system because their
meaning is determined by its formal structure only.

Hence, if we ask whether a certain fact is true in light of our actual knowledge, it is
sufficient to use this knowledge in an appropriate way. For formulas which are true (or
not) in every possible knowledge representation system, we do not need in any particular
knowledge, but only suitable logical tools.

To deal with deduction in DL, we need suitable axioms and inference rules. Here, axioms
will correspond closely to axioms of classical propositional logic, but some specific axioms
for the specific properties of knowledge representation systems are also needed. The only
inference rule will be modus ponens.

We will use the following abbreviations:
ϕ ∧ ∼ψ =def 0
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ϕ ∨ ∼ψ =def 1
Obviously, |= 1 and |= 0. Thus, 0 and 1 can be assumed to denote falsity and truth,

respectively.
Formula of the form:
(a1, v1) ∧ (a2, v2) ∧ . . . ∧ (an, vn)

where vai ∈ Va, P = {a1, a2, . . . , an} and P ⊆ A is called a P-basic formula or in short it
P-formula. Atomic formulas is called A-basic formula or in short basic formula.

Let P ⊆ A, ϕ be a P-formula and x ∈ U. If x |= ϕ then ϕ is called the P-description of
x in S. The set of all A-basic formulas satisfiable in the knowledge representation system
S = (U, A) is called the basic knowledge in S.

We write
∑
S
(P), or in short

∑(P), to denote the disjunction of all P-formulas satisfied in

S. If P = A then
∑(A) is called the characteristic formula of S.

The knowledge representation system can be represented by a data table. And its columns
are labelled by attributes and its rows are labelled by objects. Thus, each row in the table is
represented by a certain A-basic formula, and the whole table is represented by the set of all
such formulas. In DL, instead of tables, we can use sentences to represent knowledge.

There are specific axioms of DL:
1. (a, v) ∧ (a, u) ≡ 0 for any a ∈ A, u, v ∈ V and v , u

2.
∨

v ∈ Va(a, v) ≡ 1 for every a ∈ A

3. ∼(a, v) ≡ ∨
v∈Va,u,v

(a, u) for every a ∈ A

The axiom (1) states that each object can have exactly one value of each attribute.
The axiom (2) assumes that each attribute must take one of the values of its domain for

every object in the system.
The axiom (3) allows us to eliminate negation in such a way that instead of saying that

an object does not possess a given property we can say that it has one of the remaining
properties.

Proposition 2.21. The following holds for DL:

|=s

∑
S

(P) ≡ 1 for any P ⊆ A.

Proposition 2.21 means that the knowledge contained in the knowledge representation
system is the whole knowledge available at the present stage, and corresponds to the so-called
closed world assumption (CWA).

We say that a formula ϕ is derivable from a set of formulas Ω, denoted Ω ⊢ ϕ, iff it is
derivable from axioms and formulas of Ω by finite application of modus ponens. Formula
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ϕ is a theorem of DL, denoted ⊢ ϕ, if it is derivable from the axioms only. A set of formulas
Ω is consistent iff the formula ϕ ∧ ∼ϕ is not derivable from Ω.

Note that the set of theorems of DL is identical with the set of theorems of classical
propositional logic with specific axioms (1)-(3), in which negation can be eliminated. For-
mulas in the KR-language can be represented in a special form called normal form, which is
similar to that in classical propositional logic. Let P ⊆ A be a subset of attributes and letφ
be a formula in KR-language. We say that ϕ is in a P-normal form in S, in short in P-normal
form, iff either ϕ is 0 or ϕ is 1, or ϕ is a disjunction of non-empty P-basic formulas in S.
(The formula ϕ is non-empty if |ϕ| , ∅).

A-normal form will be referred to as normal form. The following is an important property
in the DL-language.

Proposition 2.22. Let ϕ be a formula in DL-language and let P contain all attributes
occurring in ϕ. Moreover, (1)-(3) and the formula

∑
S
(A). Then, there is a formula ψ in the

P-normal form such that ϕ ≡ ψ.

Here is the example from Pawlak [55]. Consider the following KR-system (Table 2.1).
The following a1b0c2, a2b0c3, a1b1c1, a2b1c3, a1b0c3 are all basic formulas (basic knowledge)
in the KR-system. For simplicity,we will omit the symbol of conjunction∧ in basic formulas.
The characteristic formula of the system is:

U a b c
1 1 0 2
2 2 0 3
3 1 1 1
4 1 1 1
5 2 1 3
6 1 0 3

Table 2.1: KR-system 1

Here, we give the following meanings of some formulas in the system:
|a1 ∨ b0c2 | = {1, 3, 4, 6}
|∼(a2b1)| = 1, 2, 3, 4, 6
|b0 → c2 | = 1, 3, 4, 5
|a2 ≡ b0 | = 2, 3, 4

Below are given normal forms of formulas considered in the above example for KR-
system 1:
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a1 ∨ b0c2 = a1b0c2 ∨ a1b1c1 ∨ a1b0c3

∼(a2b1) = a1b0c2 ∨ a2b0c3 ∨ a1b1c1 ∨ a1b0c3

b0 → c2 = a1b0c2 ∨ a1b1c1 ∨ a2b1c3

a2 ≡ b0 = a2b0c1 ∨ a2b0c2 ∨ a2b0c3 ∨ a1b1c1 ∨ a1b1c2 ∨ a1b1c3

Examples of formulas in a, b-normal form are:
∼(a2b1) = a1b0 ∨ a2b0 ∨ a1b1 ∨ a1b0

a2 ≡ b0 = a2b0 ∨ a1b1

The following is an example of a formula in {b, c}-normal form:
b0 → c2 = b0c2 ∨ b1c1 ∨ b1c3

Thus, in order to compute the normal form of a formula, we have to transform by using
propositional logic and the specific axioms for a given KR-system.

Any implication ϕ → ψ is called a decision rule in the KR-language. ϕ and ψ are
referred to as the predecessor and successor of ϕ → ψ, respectively.

If a decision rule ϕ → ψ is true in S, we say that the decision rule is consistent in S;
otherwise the decision rule is inconsistent in S.

If ϕ → ψ is a decision rule and ϕ and ψψ are P-basic and Q-basic formulas respectively,
then the decision rule ϕ → ψ is called a PQ-basic decision rule (in short PQ-rule).

A PQ-rule ϕ → ψ is admissible in S if ϕ ∧ ψ is satisfiable in S.

Proposition 2.23. A PQ-rule is true (consistent) in S iff all {P,Q}-basic formulas which
occurr in the {P,Q}-normal form of the predecessor of the rule, also occurr in {P,Q}-normal
form of the successor of the rule; otherwise the rule is false (inconsistent).

The rule b0 → c2 is false in the above table for KR-system 1, since the {b, c}-normal
form of b0 is b0c2 ∨ b0c3, {b, c}-normal form of c2 is b0c2, and the formula b0c3 does not
occur in the successor of the rule.

On the other hand, the rule a2 → c3 is true in the table, because the {a, c}-normal form
of a2 is a2c3, whereas the {a, c}-normal form of c3 is a2c3 ∨ a1c3.

Any finite set of decision rules in a DL-language is referred to as a decision algorithm in
the DL-language. If all decision rules in a basic decision algorithm are PQ-decision rules,
then the algorithm is said to be PQ-decision algorithm, or in short PQ-algorithm, and will
be denoted by (P,Q).

A PQ-algorithm is admissible in S, if the algorithm is the set of all PQ-rules admissible
in S.

A PQ-algorithm is complete in S, iff for every x ∈ U there exists a PQ-decision rule
ϕ → ψ in the algorithm such that x |= ϕ ∧ ψ in S; otherwise the algorithm is incomplete in
S.
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A PQ-algorithm is consistent in S iff all its decision rules are consistent (true) in S;
otherwise the algorithm is inconsistent. Sometimes consistency (inconsistency) may be
interpreted as determinism (indeterminism). Given a KR-system, any two arbitrary, non-
empty subset of attributes P,Q in the system determines uniquely a PQ-decision algorithm.
Consider the following KR-system from Pawlak [55]. Assume that P = {a, b, c} and
Q = {d, e} are condition and decision attributes, respectively. Set P and Q uniquely
associate the following PQ-decision algorithm with the table.

U a b c d e
1 1 0 2 1 1
2 2 1 0 1 0
3 2 1 2 0 2
4 1 2 2 1 1
5 1 2 0 0 2

Table 2.2: KR-system 2

a1b0c2 → d1e1

a2b1c0 → d1e0

a2b1c2 → d0e2

a1b2c2 → d1e1

a1b2c0 → d0e2

If assume that R = {a, b} and T = {c, d} are condition and decision attributes, respec-
tively, then the RT-algorithm determined by Table 2.2 is the following:

a1b0 → c2d1

a2b1 → c0d1

a2b1 → c2d0

a1b2 → c2d1

a1b2 → c0d0

Of course, both algorithms are admissible and complete.
In order to check whether or not a decision algorithm is consistent, we have to check

whether all its decision rules are true. The following proposition gives a much simpler
method to solve this problem.

Proposition 2.24. A PQ-decision rule ϕ → ψ in a PQ-decision algorithm is consistent
(true) in S iff for any PQ-decision rule ϕ ϕ′ → ψ′ in PQ-decision algorithm, ϕ = ϕ implies
ψ = ψ′.
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In Proposition 2.24, order of terms is important, since we require equality of expressions.
Note also that in order to check whether or not a decision rule ϕ → ψ is true we have to
show that the predecessor of the rule (the formula ϕ) discerns the decision class ψ from the
remaining decision classes of the decision algorithm in question. Thus, the concept of truth
is somehow replaced by the concept of indiscernibility.

Consider the KR-system 2 again. With P = {a, b, c} and Q = {d, e} as condition and
decision attributes. Let us check whether the PQ-algorithm:

U a b c d e
1 1 0 2 1 1
2 2 1 0 1 0
3 2 1 2 0 2
4 1 2 2 1 1
5 1 2 0 0 2

Table 2.3: KR-system 2

a1b0c2 → d1e1

a2b1c0 → d1e0

a2b1c2 → d0e2

a1b2c2 → d1e1

a1b2c0 → d0e2

is consistent or not. Because the predecessors of all decision rules in the algorithm are
different (i.e., all decision rules are discernible by predecessors of all decision rules in the
algorithm), all decision rules in the algorithm are consistent (true) and consequently the
algorithm is consistent.

This can be also seen directly from Table 2.3.
The RT-algorithm, where R = {a, b} and T = {c, d}

a1b0 → c2d1

a2b1 → c0d1

a2b1 → c2d0

a1b2 → c2d1

a1b2 → c0d0

is inconsistent because the rules
a2b1 → c0d1

a2b1 → c2d0

have the same predecessors and different successors, i.e., we are unable to discern c0d1
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and c2d0 by means of condition a2b1. Thus, both rules are inconsistent (false) in the
KR-system. Similarly, the rules

a1b2 → c2d1

a1b2 → c0d0

are also inconsistent (false).
We turn to dependency of attributes. Formally, the dependency is defined as below. Let

K = (U, R) be a knowledge base and P,Q ⊆ R. suspend.

(1) Knowledge Q depends on knowledge P iff IND(P) ⊆ IND(Q).
(2) Knowledge P and Q are equivalent, denoted P ≡ Q, if P ⇒ Q and Q ⇒ P.

(3) Knowledge P and Q are independent, denoted P . Q, iff neither P ⇒ Q

nor Q ⇒ P hold.
Obviously, P ≡ Q iff IND(P) ≡ IND(Q).

The dependency can be interpreted in different ways as Proposition 2.25 indicates:

Proposition 2.25. The following conditions are equivalent:
(1) P ⇒ Q

(2) IND(P ∪ Q) = IND(P)
(3) POSP(Q) = U

(4) PX for all X ∈ U/Q
where PX denotes IND(P)/X .

By Proposition 2.25, we can see the following: if Q depends on P then knowledge Q is
superfluous within the knowledge base in the sense that the knowledge P ∪Q and P provide
the same characterization of objects.

Proposition 2.26. If P is a reduct of Q, then P ⇒ Q − P and IND(P) = IND(Q).

Proposition 2.27. The following hold.
(1) If P is dependent, then there exists a subset Q ⊂ P such that Q is a reduct of P.

(2) If P ⊆ Q and P is independent, then all basic relations in P are pairwise independent.

(3) If P ⊆ Q and P is independent, then every subset R of P is independent.

Proposition 2.28. The following hold:
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(1) If P ⇒ Q and P′ ⊃ P, then P′ ⇒ Q.

(2) If P ⇒ Q′ and Q′ ⊂ Q, then P ⇒ Q′.

(3) P ⇒ Q and Q ⇒ R imply P ⇒ R.

(4) P ⇒ Q and Q ⇒ R imply P ∪ Q ⇒ R.

(5) P ⇒ R ∪ Q imply P ⇒ R and P ∪ Q ⇒ R.

(6) P ⇒ Q and Q ∪ R ⇒ T imply P ∪ R ⇒ T.

(7) P ⇒ Q and R ⇒ T imply P ∪ R ⇒ Q ∪ T.

The derivation (dependency) can be partial, which means that only part of knowledge
Q is derivable from knowledge P. We can define the partial derivability using the notion
of the positive region of knowledge. Let K = (U, R) be the knowledge base and P,Q ⊂ R.
Knowledge Q depends in a degree k(0 ≤ k ≤ 1) from knowledge P, in symbol P ⇒k Q, iff

k = γP(Q) = card(POSP(Q))
card(U)

where card denotes cardinality of the set.
In the consistent algorithm all decisions are uniquely determined by conditions in the

decision algorithm. In other words, this means that all decisions in a consistent algorithm
are discernible by means of conditions available in the decision algorithm.

Decision logic provides a simple means for reasoning about knowledge only by using
propositional logic, and is suitable to some applications. Note here that the so-called decision
table can serve as a KR-system.

However, the usability of decision logic seems to be restrictive. In other words, it is far
from a general system for reasoning in general. In this book, we will lay general frameworks
for reasoning based on rough set theory.

2.1.4 Decision Tables

Decision tables can be seen as a special important class of knowledge representation systems
and can be used for applications. Let K = (U, A) be a knowledge representation system and
C,D⊂ A be two subsets of attributes called condition and decision attributes, respectively.

KR-system with a distinguished condition and decision attributes is called a decision
table, denoted T = (U, A,C,D) or in short DC. Equivalence classes of the relations IND(C)
and IND(D) are called condition and decision classes, respectively.

With every x ∈ U, we associate a function dx : A → V , such that dx(a) = a(x) for every
a ∈ C ∪ D; the function dx is called a decision rule (in T), and x is referred as a label of the
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decision rule dx .
Note that elements of the set U in a decision table do not represent in general any real

objects, but are simple identifiers of decision rules.
If dx is a decision rule, then the restriction of dx to C, denoted dx |C, and the restriction

of dx to D, denoted dx |D are called conditions and decisions (actions) of dx , respectively.
The decision rule dx is consistent (in T) if for every y , x, dx |C = dy |C implies

dx |D = dy |D; otherwise the decision rule is inconsistent. A decision table is consistent if
all its decision rules are consistent; otherwise the decision table is inconsistent. Consistency
(inconsistency) sometimes may be interpreted as determinism (non-determinism).

Proposition 2.29. A decision table T = (U, A,C,D) is consistent iff C ⇒ D.

From Proposition 2.29, it follows that the practical method of checking consistency of
a decision table is by simply computing the degree of dependency between condition and
decision attributes. If the degree of dependency equals to 1, then we conclude that the table
is consistent; otherwise it is inconsistent.

Proposition 2.30. Each decision table T = (U, A,C,D) can be uniquely decomposed into
two decision tables T1 = (U, A,C,D) and T2 = (U, A,C,D) such that C ⇒1 D in T1 and
C ⇒0 D in T2 such that U1 = POSC(D) and U2 =

∪
X∈U/IND(D)

BNC(X).

Proposition 2.30 states that we can decompose the table into two subtables; one totally
inconsistent with dependency coefficient equal to 0, and the second entirely consistent with
the dependency equal to 1. This decomposition however is possible only if the degree of
dependency is greater than 0 and different from 1.

Consider Table 2.4 from Pawlak [55].

U a b c d e
1 1 0 2 2 0
2 0 1 1 1 2
3 2 0 0 1 1
4 1 1 0 2 2
5 1 0 2 0 1
6 2 2 0 1 1
7 2 1 1 1 2
8 0 1 1 0 1

Table 2.4: Decision Table 1
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Assume that a, b and c are condition attributes, and d and e are decision attributes. In
this table, for instance, the decision rule 1 is inconsistent, whereas the decision rule 3 is
consistent. By Proposition 2.30, we can decompose Decision Table 2.4 into the following
two tables:

Table 2.5 is consistent, whereas Table 2.6 is totally inconsistent, which means all decision
rules in Table 2.5 are consistent, and in Table 2.6 all decision rules are inconsistent.

Simplification of decision tables is very important in many applications, e.g. software
engineering. An example of simplification is the reduction of condition attributes in a
decision table.

U a b c d e
3 2 0 0 1 1
4 1 1 0 2 2
6 2 2 0 1 1
7 2 1 1 1 2

Table 2.5: Decision Table 2

U a b c d e
1 1 0 2 2 0
2 0 1 1 1 2
5 1 0 2 0 1
8 0 1 1 0 1

Table 2.6: Decision Table 3

In the reduced decision table, the same decisions can be based on a smaller number
of conditions. This kind of simplification eliminates the need for checking unnecessary
conditions.

Pawlak proposed simplification of decision tables which includes the following steps:

(1) Computation of reducts of condition attributes which is equivalent to elimination of
some column from the decision table.

(2) Elimination of duplicate rows.
(3) Elimination of superfluous values of attributes.

Thus, the method above consists in removing superfluous condition attributes (columns),
duplicate rows and, in addition to that, irrelevant values of condition attributes.
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By the above procedure, we obtain an “incomplete” decision table, containing only those
values of condition attributes which are necessary to make decisions. According to our
definition of a decision table, the incomplete table is not a decision table and can be treated
as an abbreviation of such a table.

For the sake of simplicity, we assume that the set of condition attribute is already reduced,
i.e., there are not superfluous condition attributes in the decision table.

With every subset of attributes B ⊆ A, we can associate partition U/IND(B) and
consequently the set of condition and decision attributes define partitions of objects into
condition and decision classes.

We know that with every subset of attributes B ⊆ A and object x we may associate set
[x]B, which denotes an equivalence class of the relation IND(B) containing an object x, i.e.,
[x]B is an abbreviation of [x]IND(B).

Thus, with any set of condition attributes C in a decision rule dx we can associate set
[x]C =

∩
a∈C[x]a. However, each set [x]a is uniquely determined by attribute value a(x).

Hence, in order to remove superfluous values of condition attributes, we have to eliminate
all superfluous equivalence classes [x]a from the equivalence class [x]C . Thus, problems of
elimination of superfluous values of attributes and elimination of corresponding equivalence
classes are equivalent.

Consider the following decision table from Pawlak [55]. Here, a, b and c are condition
attributes and e is a decision attribute. It is easy to compute that the only e-dispensable
condition attribute is c; consequently, we can remove column c in Table 2.7, which yields
Table 2.8:

U a b c d e
1 1 0 0 1 1
2 1 0 0 0 1
3 0 0 0 0 0
4 1 1 0 1 0
5 1 1 0 2 2
6 2 1 0 2 2
7 2 2 2 2 2

Table 2.7: Decision Table 4

In the next step, we have to reduce superfluous values of condition attributes in every
decision rule. First, we have to compute core values of condition attributes in every decision
rule. Here, we compute the core values of condition attributes for the first decision rule, i.e.,
the core of the family of sets

28



2.1. Rough Sets Theory

U a b d e
1 1 0 1 1
2 1 0 0 1
3 0 0 0 0
4 1 1 1 0
5 1 1 2 2
6 2 1 2 2
7 2 2 2 2

Table 2.8: Decision Table 5

F = [1]a, [1]b, [1]d = {{1, 2, 4, 5}, {1, 2, 3}, {1, 4}}
From this we have:

[1]{a,b,d} = [1]a ∩ [1]b ∩ [1]d = {1, 2, 4, 5} ∩ {1, 2, 3} ∩ {1, 4} = {1}.
Moreover, a(1) = 1, b(1) = 0 and d(1) = 1. In order to find dispensable categories,

we have to drop one category at a time and check whether the intersection of remaining
categories is still included in the decision category [1]e = {1, 2}, i.e.,

[1]b ∩ [1]d = {1, 2, 3} ∩ {1, 4} = {1}
[1]a ∩ [1]d = {1, 2, 4, 5} ∩ {1, 4} = {1, 4}
[1]a ∩ [1]b = {1, 2, 4, 5} ∩ {1, 2, 3} = {1, 2}
This means that the core value is b(1) = 0. Similarly, we can compute remaining core

values of condition attributes in every decision rule and the final results are represented in
Table 2.9.

U a b d e
1 – 0 – 1
2 1 – – 1
3 0 – – 0
4 – 1 1 0
5 – – 2 2
6 – – – 2
7 – – – 2

Table 2.9: Decision Table 6

Then, we can proceed to compute value reducts. As an example, let us compute value
reducts for the first decision rule of the decision table. Accordingly to the definition of it, in
order to compute reducts of the family
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F = {[1]a, [1]b, [1]d} = {{1, 2, 3, 5}, {1, 2, 3}, {1, 4}},
we have to find all subfamilies
G ⊆ F such that

∩
G ⊆ [1]e = {1, 2}.

There are four following subfamilies of F:
[1]b ∩ [1]d = {1, 2, 3} ∩ {1, 4} = {1}
[1]a ∩ [1]d = {1, 2, 4, 5} ∩ {1, 4} = {1, 4}
[1]a ∩ [1]b = {1, 2, 4, 5} ∩ {1, 2, 3} = {1}
and only two of them
[1]b ∩ [1]d = {1, 2, 3} ∩ {1, 4} = {1} ⊆ [1]e = {1, 2}
[1]a ∩ [1]b = {1, 2, 4, 5} ∩ {1, 2, 3} = {1} ⊆ [1]e = {1, 2}
are reducts of the family F. Hence, we have two values reducts: b(1) = 0 and d(1) = 1

or a(1) = 1 and b(1) = 0. This means that the attribute values of attributes a and b or d
and e are characteristic for decision class 1 and do not occur in any other decision classes in
the decision table. We see also that the value of attribute b is the intersection of both value
reducts, b(1) = 0, i.e., it is the core value.

2.2 Non-classical Logic

Non-classical logic is a logic which differs from classical logic in some points especially
aims to extend the interpretation of truth based on bivalence. There are many systems of
non-classical logic in the literature. Furthermore, some non-classical logics are closely tied
with foundations of rough set theory. There are two types of non-classical logics. The first
type is considered as an extension of classical logic. It extends classical logic with new
features. For instance, modal logic adds modal operators to classical logic. The second type
is an alternative to classical logic called many-valued logic and it therefore lacks some of the
features of classical logic. For example, many-valued logic is based on many truth-values,
whereas classical logic uses two truth-values, i.e. true and false. These two types of non-
classical logics are conceptually different and their uses heavily depend on applications. In
some cases, they can provide more promising results than classical logic. In the following,
we provide the basics of modal, many-valued logic., intuitionistic, and paraconsistent logic.

In this section, we briefly describe modal logic and possible world semantics for the
basis of explanation for the granular reasoning in a later chapter.
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2.2.1 Modal Logic

Modal logic extends classical logic with modal operators to represent intensional concepts
or propositional attitudes. Intensional concepts cannot be treated in the scope of bivalence
classical logic. So a new mechanism for intensionality should be extended. This can be
described by a modal operator. Generally, 2 (necessity) and 3 (possibility) are used as
modal operators. A formula of the form 2A reads “A is necessarily true” and 3A “A is
possibly true”, respectively. These are dual in the sense that 2A ↔ ¬3¬A.

In addition, reading modal operators differently, we can obtain other intensional logics
capable of formalizing some intensional concepts. Currently, many variants of modal logics
are known, e.g. tense logic, epistemic logic, deontic logic, dynamic logic, intensional logic,
etc.

Here, we present proof and model theory for modal logic. We only treat the most
basic modal logics and Kripke model as its semantics for the later extension for granular
computing. The language of the minimal modal logic denoted K is the classical propositional
logic CPC with the necessity operator 2. A Hilbert system for K is formalized as follows:

Modal Logic K
Axiom
(CPC) Axiom of CPC
(K) 2(A → B) → (2A → 2B)
Rules of Inference
(MP) ⊢ A, ⊢ A → B ⇒⊢ B

(NEC) ⊢ A ⇒⊢ 2A

Here, ⊢ A means that A is provable in K. (NEC) is called the necessitation. The notion
of proof is defined as usual. Systems of normal modal logic can be obtained by adding extra
axioms which describe properties of modality. Some of the important axioms are listed as
follows:

(D) 2A → 3A

(T) 2A → A

(B) A → 23A

(4) 2A → 22A

(5) 3A → 23A

The name of normal modal logic is systematically given by the combination of axioms.
For instance, the extension of K with the axiom (D) is called KD. However, such systems
traditionally have another names as follows:

D = KD
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T = KT
B = KB
S4 = KT4
S5 = KT5
Before the 1960s, the study of modal logic was mainly proof-theoretical due to the lack

of model theory. A semantics of modal logic has been studied by Kripke and it is now called
Kripke semantics [33].

Kripke semantics uses a possible world to interpret modal operators. Intuitively, the
interpretation of 2A says that A is true in all possible worlds. Possible worlds are linked
with the actual world by means of the accessibility relation.

A Kripke model for the normal modal logic K is defined as a triple M = ⟨W, R,V⟩,
where W is a non-empty set of possible worlds, R is an accessibility relation on W ×W , and
V is a valuation function: W × PV → {0, 1}. We here denote by PV a set of propositional
variables. F = ⟨W, R⟩ is called a frame. We write M,w |= A to mean that a formula A is
true at a world w in the model M . Let p be a propositional variable and false be absurdity.
Then, the semantic relation |= can be defined as follows:

M,w |= p ⇔ V(w, p) = 1
M,w |= false
M,w |= ¬A ⇔ M,w |= A

M,w |= A ∧ B ⇔ M,w |= A and M,w |= B

M,w |= A ∨ B ⇔ M,w |= A or M,w |= B

M,w |= A → B ⇔ M,w |= A ⇔ M,w |= B

M,w |= 2A ⇔ ∀v(wRv ⇔ M, v |= A)
M,w |= 3A ⇔ ∃v(wRv and M, v |= A)

Here, there are no restrictions on the property of R. We say that a formula A is valid
in the modal logic S, written M |=S A, just in case M,w |= A for every world w and every
model M . We know that the minimal modal logic K is complete.

Theorem 2.31. ⊢K A ⇔|= KA.

By imposing some restrictions on the accessibility relation R, we can give Kripke models
for various normal modal logics. The correspondences of axioms and conditions on R are
given as follows:

For example, the accessibility relation in a Kripke model for modal logic S4 is reflexive
and transitive since it needs axioms (K), (T) and (4). The completeness results of several
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Table 2.10: Kripke Models

Axiom Condition on R

(K) No conditions
(D) ∀w∃v(wRv) (serial)
(T) ∀w(wRw) (reflexive)
(4) ∀wvu(wRv and vRu ⇔ wRu) (transitive)
(5) ∀wvu(wRv and wRu ⇔ vRu) (euclidean)

Table 2.11: Truth tables of L3

A ∼A
T F
I I
F T

A B A ∧ B A ∨ B A →L B
T T T T T
T F F T F
T I I T I
F T F F T
F F F F T
F I F I T
I T I T T
I F F I I
I I I I T

modal logics have been established in Hughes and Cresswell [30] for details. If we read
modal operators differently, then other types of modal logics listed above can be obtained.
These logics can deal with various problems, and modal logic is of special importance to
applications.

2.2.2 Many-Valued Logic

Many-valued logic, also known as multiple-valued logic, is a family of logics that have
more than two truth-values. Namely, many-valued logics can express other possibilities in
addition to truth and falsity. The idea of many-valued logic is implicit in Aristotle’s thinking
concerning future contingents.

Now, many-valued logics are widely used for various applications, including hardware
circuits. It is also noted that the so-called fuzzy logic is classified as a many-valued (infinite-
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2.2. Non-classical Logic

Table 2.12: Truth tables of K3

A ∼A
T F
I I
F T

A B A ∧ B A ∨ B A →K B
T T T T T
T F F T F
T I I T I
F T F F T
F F F F T
F I F I T
I T I T T
I F F I I
I I I I I

valued) logic.
Here, we start with the exposition of three-valued logic. The first serious attempt to

formalize a three-valued logic has been done by Łukasiewicz [64]. This three-valued logic,
denoted L3, in which the third truth-valued reads “indeterminate” or “possible”.

Łukasiewicz considered that future contingent propositions should receive the third
truth-value denoted by I , which is neither true nor false, although his interpretation is
controversial.

The language of L3 comprises conjunction (∧), disjunction (∨), implication (→L) and
negation (∼). We will omit the subscript L when the context is clear. The semantics for
many-valued logics can be usually given by using the truth-value tables. The truth-value
tables for L3 are as follows:

Here, we should note that both the law of excluded middle A ∧ ∼A and the law of
non-contradiction ∼(A∧∼A), which are important principles of classical logic, do not hold.
In fact, these receive I when the truth-values of compound formulas are I (Table 2.11).

A Hilbert system for L3 is as follows:
Łukasiewicz’s Three-Valued Logic L3

Axiom
(L1) A → (B → A)
(L2) (A → B) → ((B → C) → (A → C))
(L3) ((A → ∼A) → A) → A

(L4) (∼A → ∼B) → (B → A)

Rules of Inference
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Figure 2.2: Logical Lattice

(MP) ⊢ A, ⊢ A → B ⇒⊢ B

Here, ∧ and ∨ are defined by means of ∼ and →L in the following way.
A ∨ B =def (A → B) → B

A ∧ B =def ∼(∼A ∨ ∼B)
Kleene also proposed three-valued logic K3 in connection with recursive function theory;

see Kleene [32]. K3 differs from L3 in its interpretation of implication →K . The truth-
value tables of K3 are given as Table 2.12. In K3, the third truth-value reads “undefined”.
Consequently, K3 can be applied to theory of programs. There are no tautologies in K3, thus
implying that we cannot obtain a Hilbert system for it. In this thesis, we describe deduction
systems for these three-valued logics in chapter 3 later.

K3 is usually called Kleene’s strong three-valued logic. In the literature, Kleene’s weak
three-valued logic also appears, in which a formula evaluates as I if any compound formula
evaluates as I. Kleene’s weak three-valued logic is equivalent to Bochvar’s three-valued
logic.

Four-valued logic is suited as a logic for a computer which must deal with incomplete
and inconsistent information. Belnap introduced a four-valued logic which can formalize
the internal states of a computer; see Belnap [7, 8]. There are four states, i.e. (T), (F),
(None) and (Both), to recognize an input in a computer. Based on these states, a computer
can compute suitable outputs.

(T) a proposition is true.
(F) a proposition is false.
(N) a proposition is neither true nor false.
(B) a proposition is both true and false.
Here, (N) and (B) abbreviate (None) and (Both), respectively. From the above, (N)

corresponds to incompleteness and (B) inconsistency. Four-valued logic can be thus seen
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Table 2.13: Truth tables of L4

∼ T F N B
F T B N

∧ T F N B
T T F N B
F F F F F
N N F N F
B B F F B

∨ T F N B
T T T T T
F T F N B
N T N N T
B T B T B

as a natural extension of three-valued logic. In fact, Belnap ’s four-valued logic can model
both incomplete information (N) and inconsistent information (B). Belnap proposed two
four-valued logics A4 and L4.

The former can cope only with atomic formulas, whereas the latter can handle compound
formulas. A4 is based on the approximation lattice depicted as Fig. 2.1. Here, B is the least
upper bound and N is the greatest lower bound with respect to the ordering ≤. L4 is based
on the logical lattice depicted as Fig. 2.2. L4 has logical symbols; ∼,∧,∨, and is based on a
set of truth-values 4 = {T, F, N, B}. One of the features of L4 is the monotonicity of logical
symbols.

Let f be a logical operation. It is said that f is monotonic iff a ⊆ b ⇒ f (a) ⊆ f (b). To
guarantee the monotonicity of conjunction and disjunction, they must satisfy the following:

a ∧ b = a ⇔ a ∨ b = b

a ∧ b = b ⇔ a ∨ b = a

The truth-value tables for L4 are as follows (Table 2.13). Belnap gave a semantics for
the language with the above logical symbols. A setup is a mapping a set of atomic formulas
Atom to the set 4. Then, the meaning of formulas of L4 are defined as follows:

s(A ∧ B) = s(A) ∧ s(B)
s(A ∨ B) = s(A) ∨ s(B)
s(∼A) = ∼s(A)
Further, Belnap defined an entailment relation → as follows:
A → B ⇔ s(A) ≤ s(B)

for all setups s.
The entailment relation → can be axiomatized as follows:
(A1 ∧ . . . ∧ Am) → (B1 ∨ . . . ∨ Bn) (Ai shares some B j)
(A ∨ B) → C ↔ (A → C)and(B → C)
A → B ⇔ ∼B → ∼A
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A ∨ B ↔ B ∨ A, A ∧ B ↔ B ∧ A

A ∨ (B ∨ C) ↔ (A ∨ B) ∨ C

A ∧ (B ∧ C) ↔ (A ∧ B) ∧ C

A ∧ (B ∨ C) ↔ (A ∧ B) ∨ (A ∧ C)
A ∨ (B ∧ C) ↔ (A ∨ B) ∧ (A ∨ C)
(B ∨ C) ∧ A ↔ (B ∧ A) ∨ (C ∧ A)
(B ∧ C) ∨ A ↔ (B ∨ A) ∧ (C ∨ A)
∼∼A ↔ A

∼(A ∧ B) ↔ ∼A ∨ ∼B, ∼(A ∨ B) ↔ ∼A ∧ ∼B

A → B, B → C ⇔ A → C

A ↔ B, B ↔ C ⇔ A ↔ C

A → B ⇔ A ↔ (A ∧ B) ⇔ (A ∨ B) ↔ B

Note here that (A∧∼A) → B and A → (B∨∼B) cannot be derived in this axiomatization.
It can be shown that the logic given above is closely related to the so-called relevant logic of
Anderson and Belnap in [4]. In fact, Belnap’s four-valued logic is equivalent to the system
of tautological entailment. Infinite-valued logic is a many-valued logic having infinite truth-
values in [0, 1]. fuzzy logic and probabilistic logic belong to this family. Łukasiewicz
introduced infinite-valued logic L∞ in 1930; see Łukasiewicz [39]. Its truth-value tables can
be generated by the following matrix:

|∼A| = 1 − |A|
|A ∨ B | = max(|A|, |B |)
|A ∧ B | = min(|A|, |B |)
|A → B | = 1 (|A| ≤ |B |)

= 1 − |A| + |B | (|A| > |B |)
A Hilbert system for L∞ is as follows:
Łukasiewicz’s Infinite-Valued logic L∞

Axioms
(IL1) A → (B → A)
(IL2) (A → B) → ((B → C) → (A → C))
(IL3) ((A → B) → B) → ((B → A) → A)
(IL4) (∼A → ∼B) → (B → A)
(IL5) ((A → B) → (B → A)) → (B → A)

Rules of Inference
(MP) ⊢ A, ⊢ A → B ⇒ ⊢ B
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Since (IL5) derived from other axioms, it can be deleted. It is known that L∞ was used
as the basis of fuzzy logic based on fuzzy set due to Zadeh [67]. Fuzzy logic is a logic of
vagueness and is found in many applications. Since the 1990s, a lot of important work has
been done for foundations for fuzzy logic.

Fitting [25, 26] studied bilattice, which is the lattice 4 with two kinds of orderings, in
connection with the semantics of logic programs. Bilattices introduce non-standard logical
connectives.

A bilattice was originally introduced by Ginsberg [28] for the foundations of reasoning
in AI, which has two kinds of orderings, i.e., truth ordering and knowledge ordering.

Later, it was extensively studied by Fitting in the context of logic programming in [24]
and of theory of truth in [25]. In fact, bilattice-based logics can handle both incomplete and
inconsistent information.

A pre-bilattice is a structure B = ⟨B, ≤t, ≤k⟩, where B denotes a non-empty set and ≤t

and ≤k are partial orderings on B. The ordering ≤k is thought of as ranking “degree of
information (or knowledge)”. The bottom in ≤k is denoted by ⊥ and the top by ⊤. If x <k y,
y gives us at least as much information as x (and possibly more).

The ordering ≤t is an ordering on the “degree of truth”. The bottom in ≤t is denoted
by false and the top by true. A bilattice can be obtained by adding certain assumptions for
connections for two orderings.

One of the most well-known bilattices is the bilattice FOUR as depicted as Fig. 2.3.
The bilattice FOUR can be interpreted as a combination of Belnap’s lattices A4 and L4.

The bilattice FOUR can be seen as Belnap’s lattice FOUR with two kinds of orderings.
Thus, we can think of the left-right direction as characterizing the ordering ≤t : a move to
the right is an increase in truth.

The meet operation ∧ for ≤t is then characterized by: x ∧ y is the rightmost thing that
is of left both x and y. The join operation ∨ is dual to this. In a similar way, the up-down
direction characterizes ≤k : a move up is an increase in information. x ⊗ y is the uppermost
thing below both x and y, and ⊗ is its dual.

Fitting [24] gave a semantics for logic programming using bilattices. Kifer and Subrah-
manian [31] interpreted Fitting’s semantics within generalized annotated logics GAL.

Fitting [25] tried to generalize Kripke’s [34] theory of truth, which is based on Kleene’s
strong three-valued logic, in a four-valued setting based on the bilattice FOUR.

A bilattice has a negation operation ¬ if there is a mapping ¬ that reverse ≤t , leaves
unchanged ≤k and ¬¬x = x. Likewise, a bilattice has a conflation if there is a mapping −
that reverse ≤k , leaves unchanged ≤t . and − − x = x. If a bilattice has both operations, they
commute if −¬x = ¬ − x for all x.
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Figure 2.3: The bilattice FOUR

In the bilattice FOUR, there is a negation operator under which ¬t = f , ¬ f = t, and ⊥
and ⊤ are left unchanged. There is also a conflation under which −⊥ = ⊤,−⊤ = ⊥ and t and
f are left unchanged. And negation and conflation commute. In any bilattice, if a negation
or conflation exists then the extreme elements ⊥, ⊤, f and t will behave as in FOUR.

Bilattice logics are theoretically elegant in that we can obtain several algebraic construc-
tions, and are also suitable for reasoning about incomplete and inconsistent information.
Arieli and Avron [6, 7] studied reasoning with bilattices. Thus, bilattice logics have many
applications in AI as well as philosophy.

2.3 Basic Situation Calculus

In this section, we provide the basic situation calculus as defined by Reiter [59] and show
how one can represent actions and their effects in this language.

The situation calculus is a second-order language specifically designed for representing
dynamically changing worlds. All changes to the world are the result of named actions. A
possible world history, which is simply a sequence of actions, is represented by a first-order
term called a situation.

Generally, the values of relations and functions in a dynamic world will vary from one
situation to the next. Relations whose truth values vary from situation to situation are called
relational fluents. They are denoted by predicate symbols taking a situation term as their
last argument. Similarly, functions whose values vary from situation to situation are called
functional fluents, and are denoted by function symbols taking a situation term as their last
argument. For example, in a world in which it is possible to paint objects, we might have
a functional fluent colour(x, s), denoting the colour of object x in that state of the world
resulting from performing the action sequence s. In a mobile robot environment, there

39



2.3. Basic Situation Calculus

might be a relational fluent closeTo(r, x, s), meaning that in that state of the world reached
by performing the action sequence s, the robot r will be close to the object x.

The principal intuition captured by our axioms is that situations are histories finite
sequences of primitive actions and we provide a binary constructor do(a, s) denoting the
action sequence obtained from the history s by adding action a to it. Other intuitions are
certainly possible about the nature of situations McCarthy and Hayes [42] saw them as
snapshots of a world.

The language Lsitcalc of the situation calculus is a second order language with equality.
It has three disjoint sorts: action for actions, situation for situations and a catch-all sort
object for everything else depending on the domain of application. Apart from the standard
alphabet of logical symbols we use logical symbols ∧,¬ and ∃ with the usual definitions of
a full set of connectives and quantifiers. Lsitcalc has the following lexicon:

• Countably infinitely many individual variable symbols of each sort. We shall use
s and a, with subscripts and superscripts, for variables of sort situation and action
respectively. We normally use lower case roman letters other than a, s, with subscripts
and superscripts for variables of sort object. In addition, because Lsitcalc is second
order, its alphabet includes countably infinitely many predicate variables of all arities.

• Two function symbols of sort situation

1. A constant symbol S0 denoting the initial situation.

2. A binary function symbol do : action × situation → situation.
The intended interpretation is that do(a, s) denotes the successor situation result-
ing from performing action a in situation s.

• A binary predicate symbol <: situation × situation, defining an ordering relation on
situations. The intended interpretation of situations is as action histories, in which
case s < s′ means that s is a proper subhistory of s′.

• A binary predicate symbol Poss : action × situation. The intended interpretation of
Poss(a, s) is that it is possible to perform the action a in situation s.

• For each n ≥ 0, countably infinitely many predicate symbols with arity n, and sorts
(action ∪ object)n. These are used to denote situation independent relations like

human(John), primeNumber(n),
movingAction(run(person, loc1, loc2)), etc.

• For each n ≥ 0, countably infinitely many function symbols of sort (action ∪
object)n → object. These are used to denote situation independent functions like

sqrt(x), height(MtEverest), agent(run(person, loc1, loc2)), etc.
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• For each n ≥ 0, a finite or countably infinite number of function symbols of sort
(action ∪ object)n → action. These are called action functions and are used to
denote actions like pickup(x), move(A, B), etc. In most applications, there will be
just finitely many action functions, but we allow the possibility of an infinite number
of them.

• For each n ≥ 0, a finite or countably infinite number of predicate symbols with arity
n+ 1 and sorts (action∪ object)n × situation. These predicate symbols are called re-
lational fluents. In most applications, there will be just finitely many relational fluents,
but we do not preclude the possibility of an infinite number of them. These are used
to denote situation dependent relations like ontable(x, s), husband(Mary, John, s),
etc. Notice that relational fluents take just one argument of sort situation, and this is
always its last argument.

• For each n ≥ 0, a finite or countably infinite number of function symbols of sort
(action ∪ object)n × situation) → action ∪ object. These function symbols are
called functional fluents. In most applications there will be just finitely many functional
fluents, but we do not preclude the possibility of an infinite number of them. These
are used to denote situation dependent functions like

age(Mary, s), prime(Minister, Italy, s), etc.
Notice that functional fluents take just one argument of sort situation, and this is always
its last argument.

2.3.1 Foundational Axioms for Situations

We now focus on the domain of situations. The primary intuition about situations that we
wish to capture axiomatically is that they are finite sequences of actions. We want also to
be able to say that a certain sequence of actions precedes another. The four axioms we are
about to present capture these two properties of situations:

do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2 (2.1a)

(∀P).P(S0) ∧ (∀a, s)[P(s) → P(do(a, s))] → (∀s)P(s) (2.1b)

Compare these to the first two axioms for the natural numbers.
Axiom (2.1b) is a second-order induction axiom, and has the effect of limiting the sort

situation to the smallest set containing So, and closed under the application of the function
do to an action and a situation. Any model of these axioms will have as its domain of
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situations the smallest set S satisfying:

1. σ0 ∈ S, where a0 is the interpretation of S0 in the model.

2. If σ ∈ S, and A ∈ A, then do(A, σ) ∈ S, where A is the domain of actions in the
model.

Notice that axiom (2.1a) is a unique name axiom for situations.
This, together with the induction axiom, implies that two situations will be the same if

they result from the same sequence of actions applied to the initial situation. Two situations
S1 and S2 may be different, yet assign the same truth values to all fluents. So a situation in
the situation calculus must not be identified with the set of fluents that hold in that situation,
i.e. with a state.

The proper way to understand a situation is as history, namely, a finite sequence of
actions; two situations are equal iff they denote identical histories. This is the major reason
for using the terminology situation instead of state; the latter carries with it the connotation
of a snapshot of the world. In our formulation of the situation calculus, situations are not
snapshots, they are finite sequences of actions. While states can repeat themselves – the
same snapshot of the world can happen twice – situations cannot.

There are two more axioms, designed to capture the concept of a subhistory:

¬s < S0, (2.2a)

s < do(a, s′) ≡ s ⊑ s′, (2.2b)

where s ⊑ s′ is an abbreviation for s < s′ ∨ s = s′. Here, the relation < provides an
ordering on situations; s < s′ means that the action sequence s′ can be obtained from the
sequences by adding one or more actions to the front of s. These axioms also have their
analogues in the last two axioms of the preceding fragment of number theory.

2.3.2 Domain Axioms and Basic Theories of Actions

Our concern here is with axiomatizations for actions and their effects that have a particular
syntactic form. These are called basic action theories, and we next describe these.

Definition 2.4 (The Uniform Formulas). Let σ be a term of sort situation. The terms of
Lsitcalc uniform in σ are the smallest set of terms such that:

1. Any term that does not mention a term of sort situation is uniform in σ.
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2. σ is uniform in σ.

3. If g is an n-ary function symbol other than do and S0, and t1, . . . , tn are terms uniform
in σ whose sorts are appropriate for g then g(t1, . . . , tn) is a term uniform in σ.

The formulas of Lsitcalc uniform in σ are the smallest set of formulas such that:

1. If t1 and t2 are terms of the same sort object or action, and if they are both uniform in
σ, then t1 = t2 is a formula uniform in σ.

2. When P is an n−ary predicate symbol of Lsitcalc other than Poss and <, and t1, . . . , tn
are terms uniform in σ whose sorts are appropriate for P, then P(t1, . . . , tn) is a
formula uniform in σ.

3. Whenever U1,U2 are formulas uniform in σ so are ¬U1,U1 ∧U2 and (∃v)U1 provided
v is an individual variable, and it is not of sort situation.

Thus, a formula of Lsitcalc is uniform in σ iff it is first order, it does not mention the
predicates Poss or < it does not quantify over variables of sort situation, it does not mention
equality on situations, and whenever it mentions a term of sort situation in the situation
argument position of a fluent, then that term is σ.

Definition 2.5 (Action Precondition Axiom). An action precondition axiom of Lsitcalc is
a sentence of the form:

Poss(A(x1, . . . , xn), s) ≡ ΠA(x1, . . . , xn, s),
where A is an n−ary action function symbol, and ΠA(x1, . . . , xn, s) is a formula that is

uniform in s and whose free variables are among x1, . . . , xn, s.
For example, in a blocks world, we might typically have;
Poss(pickup(x), s) ≡ (∀y)¬holding(y, s) ∧ ¬heavy(x, s).

The uniformity requirement on ΠA ensures that the preconditions for the executability
of the action A(x1, . . . , xn) are determined only by the current situation s, not by any other
situation.

Definition 2.6 (Successor State Axiom).

1. A successor state axiom for an (n + 1)-ary relational fluent F is a sentence of Lsitcalc

of the form:

F(x1, . . . , xn, do(a, s)) ≡ ΦF(x1, . . . , xn, a, s),

where ΦF(x1, . . . , xn, a, s) is a formula uniform in s, all of whose free variables are
among a, s, x1, . . . , xn.
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An example of such an axiom is:

broken(x, do(a, s)) ≡
(∃r){a = drop(r, x) ∧ f ragile(x, s)} ∨ (∃b){a = explode(b) ∧ nexto(b, x, s)} ∨

broken(x, s) ∧ ¬(∃r)a = repair(r, x).

As for action precondition axioms, the uniformity ofΦF guarantees that the truth value
of F(x1, . . . , xn, do(a, s)) in the successor situation do(a, s) is determined entirely by
the current situation s, and not by any other situation. In systems and control theory,
this is often called the Markov property.

2. A successor state axiom for an (n + 1)-ary functional fluent f is a sentence of Lsitcalc

of the form:

f (x1, . . . , xn, do(a, s)) = y ≡ ϕ f (x1, . . . , xn, y, a, s),

where ϕ f (x1, x1, . . . , xn, y, a, s) is a formula uniform in s, all of whose free variables
are among x1, . . . , xn, y, a, s). A blocks world example is:

height(x, do(a, s)) = y ≡ a = moveToTable(x) ∧ y = 1 ∨
(∃z, h)(a = move(x, z) ∧ height(z, s) = h + y = h + 1) ∨
height(x, s) = y ∧ a , moveToTable(x) ∧ ¬(∃z)a) = move(x, z).

As for relational fluents, the uniformity of ϕ f in the successor state axioms for func-
tional fluents guarantees the Markov property. The value of a functional fluent in a
successor situation is determined entirely by properties of the current situation, and
not by any other situation.

Basic Action Theories Henceforth, we shall consider theories D of Lsitcalc of the following
forms:

D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0

where,

1. Σ are the foundational axioms for situations.
2. Dss is a set of successor state axioms for functional and relational fluents, one for each

such fluent of the language Lsitcalc

3. Dap is a set of action precondition axioms, one for each action function symbol of
Lsitcalc

4. Duna is the set of unique names axioms for all action function symbols of Lsitcalc

5. DS0 is a set of first order sentences that are uniform in S0. Thus, no sentence of DS0

quantifies over situations, or mentions Poss,< or the function symbol do, so that S0 is
the only term of sort situation mentioned by these sentences, DS0 will function as the
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initial theory of the world (i.e. the one we start off with, before any actions have been
“executed”) Often, we shall call DS0 the initial database. The initial database may
(and often will) contain sentences mentioning no situation term at all, for example,
unique names axioms for individuals, like John , Mary, or “timeless” facts like
isMountain(MtEverest), or dog(x) → mammal(x).

Definition 2.7. A basic action theory is any collection of axioms D of the above form that
also satisfies the following functional fluent consistency property.

Whenever f is a functional fluent whose successor state axiom in Dss is
f (®x, do(a, s)) = y ≡ ϕ f (®x, y, a, s),

then
Duna ∪ DS0 |= (∀a, s).(∀®x).(∃y)ϕ f (®x, y, a, s) ∧

[(∀y, y′).ϕ f (®x, y, a, s) ∧ ϕ f (®x, y′, a, s) → y = y′].

Regression is perhaps the single most important theorem-proving mechanism for the
situation calculus; it provides a systematic way to establish that a basic action theory entails
a so-called regressable sentence.

Reiter [59] proved decidability of a fragment of the situation calculus, so-called propo-
sitional fluents, basic action theories and regressable formulas. But in this thesis, we do not
treat Regression for decidability.

As for Frame Problem, we will survey and discuss in Chapter 6.

45



Chapter 3

Deduction System based on Rough Set

Abstract Rough set theory has been extensively used both as a mathematical foundation
of granularity and vagueness in information systems and in a large number of applications.
However, the decision logic for rough sets is based on classical bivalent logic; therefore,
it would be desirable to develop decision logic for uncertain, ambiguous and inconsistent
objects. In this study, a deduction system based on partial semantics is proposed for decision
logic. We propose Belnap’s four-valued semantics as the basis for three-valued and four-
valued logics to extend the deduction of decision logic since the boundary region of rough
sets is interpreted as both a non-deterministic and inconsistent state. We also introduce
the consequence relations to serve as an intermediary between rough sets and many-valued
semantics. Hence, consequence relations based on partial semantics for decision logic are
defined, and axiomatization by Gentzen-type sequent calculi is obtained. Furthermore, we
extend the sequent calculi with a weak implication to hold for a deduction theorem and also
show a soundness and completeness theorem for the four-valued logic for decision logic.

3.1 Introduction

This chapter is based on Nakayama et al.[49, 50]. Rough set theory has been extensively
used both as a mathematical foundation of granularity and vagueness in information systems
and in a large number of applications. However, the decision logic for rough sets is based
on classical bivalent logic; therefore, it would be desirable to develop decision logic for
uncertain, ambiguous and inconsistent objects. In this study, a deduction system based on
partial semantics is proposed for decision logic. We propose Belnap’s four-valued semantics
as the basis for three-valued and four-valued logics to extend the deduction of decision logic
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since the boundary region of rough sets is interpreted as both a non-deterministic and
inconsistent state. We also introduce the consequence relations to serve as an intermediary
between rough sets and many-valued semantics. Hence, consequence relations based on
partial semantics for decision logic are defined, and axiomatization by Gentzen-type sequent
calculi is obtained. Furthermore, we extend the sequent calculi with a weak implication to
hold for a deduction theorem and also show a soundness and completeness theorem for the
four-valued logic for decision logic.

Pawlak introduced the theory of rough sets for handling rough (coarse) information [55].
Rough set theory is now used as a mathematical foundation of granularity and vagueness
in information systems and is applied to a variety of problems. In applying rough set
theory, decision logic was proposed for interpreting information extracted from data tables.
However, decision logic adopts the classical two-valued logic semantics. It is known that
classical logic is not adequate for reasoning with indefinite and inconsistent information.
Moreover, the paradoxes of the material implications of classical logic are counterintuitive.

Rough set theory can handle the concept of approximation by the indiscernibility relation,
which is a central concept in rough set theory. It is an equivalence relation, where all
identical objects of sets are considered elementary. Rough set theory is concerned with the
lower and upper approximations of object sets. These approximations divide sets into three
regions, namely, the positive, negative, and boundary regions. Thus, Pawlak rough sets have
often been studied in a three-valued logic framework because the third value is thought to
correspond to the boundary region of rough sets [8][13].

On the contrary, in this paper, we propose that the interpretation of the boundary region
is based on four-valued semantics rather than three-valued since the boundary region can be
interpreted as both undefined and overdefined. For example, a knowledge base K of a Rough
set can be seen as a theory KB whose underlying logic is L. KB is called inconsistent when
it contains theorems of the form A and ∼A (the negation of A). If KB is not inconsistent,
it is called consistent. Our approach for a rough set proposes useful theory to handle such
inconsistent information without system failure. In this study, non-deterministic features are
considered the characteristic of partial semantics. Undetermined objects in the boundary
region of rough sets have two interpretations of both undefinedness and inconsistency.

The formalization of both three-valued and four-valued logics is carried out using a
consequence relation based on partial semantics. The basic logic for decision logic is
assumed to be many-valued, in particular, three-valued or four-valued and some of its
alternatives [64]. If such many-valued logics are used as a basic deduction system for
decision logic, it can be enhanced to a more useful method for data analysis and information
processing. The decision logic of rough set theory will be axiomatized using Gentzen
sequent calculi and a four-valued semantic relation as basic theory. To introduce many-
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valued logic to decision logic, consequence relations based on partial interpretation are
investigated, and the sequent calculi of many-valued logic based on them are constructed.
Subsequently, many-valued logics with weak implication are considered for the deduction
system of decision logic.

The deductive system of decision logic has been studied from the granule computing
perspective, and in [23], an extension of decision logic was proposed for handling uncertain
data tables by fuzzy and probabilistic methods. In [38], a natural deduction system based
on classical logic was proposed for decision logic in granule computing. In [8], the sequent
calculi of the Kleene and Łukasiewicz three-valued logics were proposed for rough set
theory based on non-deterministic matrices for semantic interpretation. The Gentzen-
type axiomatization of three-valued logics based on partial semantics for decision logic is
proposed in [49, 50]. The reasoning for rough sets is comprehensively studied in [2].

This chapter is organized as follows. In Section 3.2, we briefly review rough sets,
the decision table, and decision logic. In Section 3.3, Belnap’s four-valued semantics is
introduced as the basis of the semantics interpretation presented in the paper. In Section 3.4,
we present a partial semantics model for rough sets and decision logic based on four-valued
semantics, and some characteristics are presented. In Section 3.5, an axiomatization using
Gentzen sequent calculus is presented according to a consequence relation based on the
previously discussed partial semantics. In Section 3.6, we discuss the extension of sequent
calculi for many-valued logics with weak negation and implication to enable a deduction
theorem. In Section 3.7, A soundness and completeness theorem is showed for a four-valued
sequent calculus GC4. Finally, in Section 3:conclusion, a summary of the study and possible
directions for future work are provided.

3.2 Rough Sets and Decision Logic

Rough set theory, proposed by Pawlak [55], provides a theoretical basis of sets based on
approximation concepts. A rough set can be seen as an approximation of a set. It is denoted
by a pair of sets called the lower and upper approximations of the set. Rough sets are used
for imprecise data handling. For the upper and lower approximations, any subset X of U
can be in any of three states according to the membership relation of the objects in U. If the
positive and negative regions on a rough set are considered to correspond to the truth-value
of a logical form, then the boundary region corresponds to ambiguity in deciding truth or
falsity. Thus, it is natural to adopt a three-valued logic.

Rough set theory is outlined below. Let U be a non-empty finite set called a universe of
objects. If R is an equivalence relation on U, then U/R denotes the family of all equivalence
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classes of R, and the pair (U, R) is called a Pawlak approximation space. A knowledge base
K is defined as follows:

Definition 3.1. A knowledge base K is a pair K = (U, R), where U is a universe of objects,
and R is a set of equivalence relations on the objects in U.

Definition 3.2. Let R ∈ R be an equivalence relation of the knowledge base K = (U, R) and
X any subset of U. Then, the lower and upper approximations of X for R are defined as
follows:
RX =

∪{Y∈ U/R | Y ⊆ X} = {x ∈ U | [x]R ⊆ X},
RX =

∪{Y∈ U/R | Y ∩ X , 0} = {x ∈ U | [x]R ∩ X, ∅}.

Definition 3.3. If K = (U,R), R ∈ R, and X ⊆ U, then the R-positive, R-negative, and
R-boundary regions of X with respect to R are defined respectively as follows:

POSR(X) = RX,

NEGR(X) = U − RX,

BNR(X) = RX − RX .

Objects included in an R-boundary are interpreted as the truth-value gap or glut. The
semantic interpretation for rough sets is defined later.

Here, we denote the language of rough sets.

3.2.1 Decision Tables

Decision tables can be seen as a special important class of knowledge representation systems
and can be used for applications. Let K = (U, A) be a knowledge representation system and
C,D⊂ A be two subsets of attributes called condition and decision attributes, respectively.

A KR-system with a distinguished condition and decision attributes is called a decision
table, denoted T = (U, A,V, s) or in short DC, where U is a finite and nonempty set of
objects, A is a finite and nonempty set of attributes, V is a nonempty set of values for a∈ A,
and s is an information function that assigns a value U × sx : A → V (for simplicity, the
subscript x will be omitted), where ∀x ∈ U, and ∀a ∈ C ∪ D ⊂ A.

Equivalence classes of the relations IND(C) and IND(D), a subset of A, are called
condition and decision classes, respectively.

With every x ∈ U, we associate a function dx : A → V , such that dx(a) = a(x) for every
a ∈ C ∪ D; the function dx is called a decision rule (in T), and x is referred as a label of the
decision rule dx .
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The decision rule dx is consistent (in T) if for every y , x, dx |C = dy |C implies
dx |D = dy |D; otherwise the decision rule is inconsistent.

A decision table is consistent if all of its decision rules are consistent; otherwise the
decision table is inconsistent. Consistency (inconsistency) sometimes may be interpreted as
determinism (non-determinism).

U a b c d e
1 1 0 2 2 0
2 0 1 1 1 2
3 2 0 0 2 2
4 1 0 2 2 0
5 1 0 2 0 1
6 2 2 0 1 1
7 2 1 1 1 2
8 0 1 1 0 1

Table 3.1: Decision table

Proposition 3.1. A decision table T = (U, A,V, s) is consistent iff C⇒D, where C and D
are condition and decision attributes.

From Proposition 3.1, it follows that the practical method of checking the consistency
of a decision table is by simply computing the degree of dependency between the condition
and decision attributes. If the degree of dependency equals 1, then we conclude that the
table is consistent; otherwise, it is inconsistent.

Consider Table 3.1 from Pawlak [55]. Assume that a, b, and c are condition attributes
and d and e are decision attributes. In this table, for instance, decision rule 1 is inconsistent,
whereas decision rule 3 is consistent. Decision rules 1 and 5 have the same condition, but
their decisions are different.

3.2.2 Decision Logic

A decision logic language (DL-language) L is now introduced [55]. The set of attribute
constants is defined as a ∈ A, and the set of attribute value constants is V =

∪
Va. The

propositional variables are φ and ψ, and the propositional connectives are ⊥, ∼, ∧, ∨, →
and ≡.

Definition 3.4. The set of formulas of the decision logic language (DL-language) L is the
smallest set satisfying the following conditions:
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1. (a, v), or in short av, is an atomic formula of L.

2. If φ and ψ are formulas of the DL-language, then ∼φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, and
φ ≡ ψ are formulas.

The interpretation of the DL-language L is performed using the universe U in S = (U, A)
of the Knowledge Representation System (KR-system) and the assignment function, mapping
from U to objects of formulas. Formulas of the DL-language are interpreted as subsets of
objects consisting of a value v and an attribute a.

Atomic formulas (a, v) describe objects that have a value v for the attribute a. Attribute a
is a function from U to V , defined by a(x) = sx(a), where x ∈ U, and sx(a) ∈ V . If let sx(a) =
v, then a can be viewed as a binary relation on U, such that for ⟨x, v⟩ ∈ U × U, ⟨a, v⟩ ∈ a
if and only if a(x) = v. In this case, the atomic formula (a, v) can be denoted by a(x, v),
where x is a variable, and v is taken as a constant; they are all terms in U. Thus, (a, v) can
be viewed as formula a(x, v) which is an atomic formula. The semantics for DL is given by
a model. For DL, the model is the KR-system S = (U, A), which describes the meaning of
symbols of predicates (a, v) in U, and if we properly interpret the formulas in the model, then
each formula becomes a meaningful sentence, expressing the properties of some objects.
An object x ∈ U satisfies a formula φ in S = (U, A), denoted x |=S φ or in short x |= φ, iff
the following conditions are satisfied:

Definition 3.5. The semantic relations of a DL-language are defined as follows:
x |=S a(x, v) iff a(x) = v,
x |=S ∼φ iff x ⊭S φ,
x |=S φ ∨ ψ iff x |=S φ or x |=S ψ,
x |=S φ ∧ ψ iff x |=S φ and S |=S ψ,
x |=S φ → ψ iff x |=S ∼φ ∨ ψ,
x |=S φ ≡ ψ iff x |=S φ → ψ and s |=S ψ → φ.

If φ is a formula, then the set |φ|S defined as follows:

|φ|S = {x ∈ U | x |=S φ}
and will be called the meaning of the formula φ in S. The following properties are obvious:

Proposition 3.2. The meaning of an arbitrary formula satisfies the following:
|¬φ|S = U − |φ|S,
|φ ∨ ψ |S = |φ|S ∪ |ψ |S,
|φ ∧ ψ |S = |φ|S ∩ |ψ |S,
|φ→ψ |S = (U − |φ|S) ∪ |ψ |S,
|φ ≡ ψ |S = |φ|S → |ψ |S ∩ |φ|S → |ψ |S.
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Thus, the meaning of the formula φ is the set of all objects having the property expressed
by the formula φ, or the meaning of the formula φ is the description in the KR-language
of the set objects |φ|. A formula φ is said to be true in a KR-system S, denoted |=S φ, iff
|φ|S = U, i.e., the formula is satisfied by all objects of the universe in the system S. Formulas
φ and ψ are equivalent in S iff |φ|S = |ψ |S.

Proposition 3.3. The following are the simple properties of the meaning of a formula.
|=S φ iff |φ|S = U,
|=S ∼φ iff |φ|S = ∅,
φ → ψ iff |ψ |S ⊆ |ψ |S,
φ ≡ ψ iff |ψ |S = |ψ |S.

To deal with deduction in DL, we need suitable axioms and inference rules. Here, the
axioms will correspond closely to the axioms of classical propositional logic, but some spe-
cific axioms for the specific properties of knowledge representation systems are also needed.
The only inference rule will be modus ponens. We will use the following abbreviations:

φ ∧ ∼φ =de f 0 and φ ∨ ∼φ =de f 1.

A formula of the form
(a1, v1)∧ (a2, v2) ∧ . . . ∧ (an, vn),
where vai ∈ Va, P = {a1, a2, . . . , an}, and P ⊆ A, is called a P-basic formula or in short

P-formula. An atomic formula is called an A-basic formula or in short a basic formula.
Let P ⊆ A, φ be a P-formula, and x ∈ U. The set of all A-basic formulas satisfiable

in the knowledge representation system S = (U, A) is called the basic knowledge in S. We
write Σ

s
(P) to denote the disjunction of all P-formulas satisfied in S. If P = A, then Σ

s
(A) is

called the characteristic formula of S.
The knowledge representation system can be represented by a data table. Its columns

are labeled by attributes, and its rows are labeled by objects. Thus, each row in the table is
represented by a certain A-basic formula, and the whole table is represented by the set of
all such formulas. In DL, instead of tables, we can use sentences to represent knowledge.
There are specific axioms of DL:

1. (a, v) ∧ (a, u) ≡ 0 for any a ∈ A, u, v ∈ V , and v , u.
2.

∨
v∈Va

≡ 1 for every a ∈ A.

3. ∼ (a, v) ≡ ∨
a∈Va,u,v(a, u) for every a ∈ A.

We say that a formula φ is derivable from a set of formulas Ω, denoted Ωφ, iff it is
derivable from the axioms and formulas of Ω by a finite application of modus ponens.
Formula φ is a theorem of DL, denoted φ, if it is derivable from the axioms only. A set of
formulas Ω is consistent iff the formula φ ∧ ∼φ is not derivable from Ω. Note that the set
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of theorems of DL is identical with the set of theorems of classical propositional logic with
specific axioms (1)–(3), in which negation can be eliminated.

Formulas in the KR-language can be represented in a special form called a normal form,
which is similar to that in classical propositional logic. Let P ⊆ A be a subset of attributes
and let φ be a formula in the KR-language. We say that φ is in a P-normal form in S, in
short in P-normal form, iff either φ is 0 or φ is 1, or φ is a disjunction of non-empty P-basic
formulas in S. (The formula φ is non-empty if |φ| , ∅).

A-normal form will be referred to as normal form. The following is an important property
in the DL-language.

Proposition 3.4. Let φ be a formula in a DL-language, and let P contain all attributes
occurring in φ. Moreover, assume axioms (1)–(3) and the formula Σ

s
(A). Then, there is a

formula ψ in the P-normal form such that φ ≡ ψ.

Definition 3.6. A translation τ from the propositional constant L to an interpretation of a
rough set language LRS of atomic expressions in the KR-system S is combined with ¬,∨,∧
and → such that

τ(|φ|S) = |(a, v)|S,
τ(| ∼ φ|S) = −τ(|φ|S),
τ(|φ ∨ ψ |S) = τ(|φ|S) ∪ τ(|ψ |S),
τ(|φ ∧ ψ |S) = τ(|φ|S) ∩ τ(|ψ |S),
τ(|φ → ψ |S) = −τ(|φ|S) ∪ τ(|ψ |S),
τ(|φ ≡ ψ |S) =

(τ(|φ|S) ∩ τ(|ψ |S)) ∪ (−τ(|φ|S) ∩ −τ(|ψ |S)).

Let φ be an atomic formula of the DL-language, R ∈ C ∪ D an equivalence relation, X
any subset of U, and a valuation v of propositional variables. Then, the truth-values of φ is
defined as follows:

∥φ∥v =


t if |φ|S ⊆ POSR(U/X)
f if |φ|S ⊆ NEGR(U/X)

This shows that decision logic is based on bivalent logic. In the next section, an interpretation
of decision logic based on three-valued logics will be discussed.
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3.3 Belnap’s Four-Valued Logic

Belnap [10] first claimed that an inference mechanism for a database should employ a certain
four-valued logic. The important point in Belnap’s system is that we should deal with both
incomplete and inconsistent information in databases. To represent such information, we
need a four-valued logic since classical logic is not appropriate for the task. Belnap’s four-
valued semantics can in fact be viewed as an intuitive description of the internal states of a
computer.

In Belnap’s four-valued logic B4, four kinds of truth-values are used from the set 4 =
{T, F, N, B}. These truth-values can be interpreted in the context of a computer, namely T
means just told True, F means just told False, N means told neither True nor False, and B
means told both True and False. Intuitively, N can be equated as ∅, and B as overdefined.

Belnap outlined a semantics for B4 using logical connectives. Belnap’s semantics uses
a notion of set-ups mapping atomic formulas into 4. A set-up can then be extended for any
formula in B4 in the following way:

s(A & B) = s(A) & s(B),
s(A ∨ B) = s(A) ∨ s(B),
s(∼A) = ∼s(A).
Belnap also defined a concept of entailments in B4. We say that A entails B just in

case for each assignment of one of the four values to variables, the value of A does not
exceed the value of B in B4, i.e., s(A) ≤ s(B) for each set-up s. Here, ≤ is defined as
F ≤ B, F ≤ N, B ≤ T, N ≤ T. Belnap’s four-valued logic in fact coincides with the
system of tautological entailments due to Anderson and Belnap [4]. Belnap’s logic B4 is
one of the paraconsistent logics capable of tolerating contradictions. Belnap also studied the
implications and quantifiers in B4 in connection with question-answering systems. However,
we will not go into detail here.
The structure that consists of these four elements and the five basic operators is usually
called B4.

Designated elements and models: The next step in using B4 for reasoning is to choose its
set of designated elements. The obvious choice is D = {T,B} since both values intuitively
represent a formula known to be true. The set D has the property that a ∧ b ∈ D iff both a
and b are in D, while a ∨ b ∈ D iff either a or b is in D. From this point, various semantics
notions are defined on B4 as natural generalizations of similar classical notions.
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3.4 Rough Sets and Partial Semantics

Partial semantics for classical logic has been studied by van Benthem in the context of the
semantic tableaux [65][63].

This insight can be generalized to study consequence relations in terms of a Gentzen-type
sequent calculus. To handle an aspect of vagueness on the decision logic, the forcing relation
for the partial interpretation is defined as a four-valued semantic.

As the proposed approach can replace the base bivalent logic of decision logic, alternative
versions of decision logic based on many-valued logics are obtained.

The model S of decision logic based on four-valued semantics consists of a universe U
for the language L and an assignment function s that provides an interpretation for L. For
the domain |S| of the model S, a subset is defined by S = ⟨S+, S−⟩. The first term of the
ordered pair denotes the set of n-tuples of elements of the universe that verify the relation S,
whereas the second term denotes the set of n-tuples that falsify the relation.

The interpretation of the propositional variables of L for the model S is given by
SS = ⟨(S)+S, (S)

−
S⟩. An interpretation function for a domain |S| in the standard way as a

function s with domain L such that s(x) ∈ |S|n if S is a relation symbol. We need two
interpretation functions for each model here; a model for partial logic for a predicate symbol
is a triple ⟨|S|, s+, s−⟩, where s+ and s− are interpretation functions for |S|. The denotation
of a relation symbol consists of those tuples for which it is true that they stand in the relation;
the antidenotation consists of the tuples for which this is false. As before, truth and falsity
are neither true nor false, or it may be both true and false that some tuple stands in a certain
relation. The following definition is modified from [47].

Definition 3.7. Partial Relation: An n-ary partial relation S on the domain |S1 |, . . . , |Sn |
is a tuple ⟨S+, S−⟩ of the relations S+, S− ⊆ |S1 | × . . . × |Sn |. The relation S+ is called S’s
denotation; S− is called S’s antidenotation, |S1 | × . . . × |Sn |/(S+ ∪ S−) its gap, and S+ ∩ S−

its glut. A partial relation is coherent if its glut is empty, total if its gap is empty, incoherent
if it is not coherent and classical if it is both coherent and total. A unary partial relation is
called a partial set.

Definition 3.8. Partial Operation for 4: Let S1 = ⟨S+1 , S−
1 ⟩ and S2 = ⟨S+2 , S−

2 ⟩ be partial
relations. Define
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−S1 := ⟨S+1 , S−
1 ⟩ (partial complementation),

S1 ∩ S2 := ⟨S+1 ∩ S−
2 , S

+
1 ∪ S−

2 ⟩ (partial intersection),
S1 ∪ S2 := ⟨S+1 ∪ S−

2 , S
+
1 ∩ S−

2 ⟩ (partial union),
S1 ⊆ S2 := ⟨S+1 ⊆ S−

2 , S
+
1 ⊆ S−

2 ⟩ (partial inclusion).

Partial inclusion means S1 approximates S2.
Let A be some set of partial relations; then, following properties hold:∩

A := ⟨
∩

{S+ | S ∈ A},
∪

{S− | S ∈ A }⟩,∪
A := ⟨

∪
{S+ | S ∈ A},

∩
{S− | S ∈ A }⟩.

To handle three-valued and four-valued logic in a unified manner, we adopt the four-value
interpretation by Belnap [10].

Let 4 = {T,F,N,B} be the truth-values for the four-valued semantics of L, where each
value is interpreted as true, false, neither true nor false, and both true and false.

A model S determines a four-valued assignment v on atomic formula in the following
way:

∥φ∥v =


T
F
N
B


if |φ,∼φ|S ∩ S =


{φ}
{∼φ}
{∅}
{φ,∼φ}


.

Then, the truth-values of φ on S = (U, A) is defined as follows:

∥φ∥v =


T if |φ|S ⊆ POSR(U/X)
F if |φ|S ⊆ NEGR(U/X)
N if |φ|S ⊈ POSR(U/X) ∪ NEGR(U/X)
B if |φ|S ⊆ BNR(U/X)

Definition 3.9 (Partial Model). A partial model for a propositional DL-language L is a
tuple M = (T ,D,O), where

• T is a non-empty set of truth-values.
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• ∅ ⊂ D ⊆ T is the set of designated values.
• For every n-ary connective ⋄ of L, O includes a corresponding n-ary function

∼⋄ from
T n to 4.

Let W be the set of well-formed formulas of L. A (legal) valuation in a Partial Model S
is a function V : W → 4 that satisfies the following condition:

V(⋄(ψ1, · · · , ψn)) ∈
∼⋄(V(ψ1), · · · ,V(ψn))

for every n-ary connective ⋄ of L and any ψ1, · · · , ψn ∈ W .
LetVM denote the set of all valuations in the partial model D. The notions of satisfaction

under a valuation, validity, and consequence relation are defined as follows:

• A formula φ ∈ W is satisfied by a valuation v ∈ VM , in symbols, M |=v φ, v(φ) ∈ D.
• A sequent Σ = Γ ⇒ ∆ is satisfied by a valuation v ∈ VM , in symbols, M |=v Σ, iff

either v does not satisfy some formula in Γ or v satisfies some formula in ∆.
• A sequent Σ is valid, in symbols, |= Σ, if it is satisfied by all valuations V ∈ VM .
• The consequence relation on W defined by M is the relation M ⊢ on sets of formulas

in W such that, for any T, S ⊆ W,T ⊢M S iff there exist finite sets Γ ⊆ T,∆ ⊆ S such
that the sequent Γ⇒ ∆ is valid.

Definition 3.10. (Tarski truth definition for partial propositional logic) Let L be a set of
propositional constants and let v : P → {T,F,N,B} be a (valuation) function.

∥p∥v = v(p) if p ∈ P

The truth-values of φ on the information system S = (U, A) are represented by forcing
relations as follows:

∥φ∥v = T iff M |=+v φ and M ̸|=−v φ,
∥φ∥v = F iff M ̸|=+v φ and M |=−v φ,
∥φ∥v = N iff M ̸|=+v φ and M ̸|=−v φ,
∥φ∥v = B iff M |=+v φ and M |=−v φ.

A semantic relation for the model M is defined following [65][14][47]. The truth and
falsehood of a formula of the DL-language are defined in a model M. The truth (denoted
by |=+v ) and the falsehood (denoted by |=−v ) of the formulas of the decision logic in M are
defined inductively.

Definition 3.11. The semantic relations of M |=+v φ and M |=−v φ are defined as follows:

57



3.4. Rough Sets and Partial Semantics

M |=+v φ iff φ ∈ M+,
M |=−v φ iff φ ∈ M−,
M |=+v∼ φ iff M |=−v φ,
M |=−v∼ φ iff M |=+v φ,
M |=+v φ ∨ ψ iff M |=+v φ or M |=+v ψ,
M |=−v φ ∨ ψ iff M |=−v φ and M |=−v ψ,
M |=+v φ ∧ ψ iff M |=+v φ and M |=+v ψ,
M |=−v φ ∧ ψ iff M |=−v φ or M |=−v ψ,
M |=+v φ → ψ iff M |=−v φ or M |=+v ψ,
M |=−v φ → ψ iff M |=+v φ and M |=−v ψ.

The symbol ∼ denotes strong negation, in which ∼ is interpreted as true if the proposition is
false.

Since validity in B4 is defined in terms of truth preservation, the set of designated values
is {T,B} of 4. We assume that an interpretation of B4 satisfies the following constraint.

Definition 3.12. Exclusion and Exhaustion:
Exclusion: model M is exclusion iff S+ ∩ S− = ∅.
Exhaustion: model M is exhaustion iff S+ ∪ S− = S.

The model M is consistent if and only if S+∩ S− = ∅. The relational domains of general
models are closed under the operations ∩,∪.

The natural operation on the set of truth combinations 4 = {T,F,N,B} that we have
defined in the previous section can be extended to the class of partial relations.

Definition 3.13. A model of B4 for L is a pair M = (S, | · |), where S is a non-empty set, and
| · | is an interpretation of a propositional symbol, with |p| : Sn → 4 for any p ∈ Pn, n ≤ 0.

Example 3.4.1. Suppose the decision table below where the condition and decision attributes
are not considered.

U = {x1, x2, x3, x4, x5, x6, x7, x8}
Attribute: C = {c1, c2, c3, c4}
c1 = {x1, x4, x8}, c2 = {x2, x5, x7}, c3 = {x3},
c4 = {x6}
U/C = c1 ∪ c2 ∪ c3 ∪ c4

Any subset X = {x3, x6, x8}
POSC(X) = c3 ∪ c4 = {x3, x6}
BNC(X) = c1 = {x1, x4, x8}
NEGC(X) = c2 = {x2, x5, x7}
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The evaluation of the truth-values of the formulas is as follows:
If |Cc3 |S ⊆ POSC(X) then ∥Cc3∥v = T,
If |Cc2 |S ⊆ NEGC(X) then ∥Cc2∥v = F,
If |Cc2 |S ⊈ POSC(X) ∪ NEGC(X) then ∥Cc2∥v = N,
If |Cc1 |S ⊆ BNC(X) then ∥Cc1∥v = B.

Example 3.4.2. Consider Table 3.1 again. Assume that a, b, and c are condition attributes
and d and e are decision attributes. Decision rules 1 and 5 are inconsistent. This means
that 1 and 5 can be considered to have non-deterministic value, e.g., N or B respectively.

3.5 Consequence Relation and Sequent Calculus

Partial semantics in classical logic is closely related to the interpretation of the Beth tableau
[63]. Van Benthem [65] suggested the relationship of the consequence relation to a Gentzen
sequent calculus. We replace the bivalent logic of the decision logic with many-valued
logics based on partial semantics.

We begin by recalling the basic idea of the Beth tableau. The Beth tableau proves X → Y
by constructing a counterexample of X & ∼Y . The Beth tableaux has several partial features.
For instance, there may be counterexamples even if a branch remains open. This insight led
van Benthem [65] to work out partial semantics for classical logic.

Here, we describe a brief introduction of sequent calculi. For sequent calculi, for-
mulas are constructed from the propositional variables and logical connectives, e.g., ∼
, ¬, ∧, ∨, and →. Capital letters A, B, . . . are used for formulas, and Greek capital letters Γ,
∆ are used for finite sequences of formulas. A sequent is an expression of the form Γ⇒ A.
We introduce some concepts of sequent calculi. If a sequent Γ⇒ A is provable in a system
S, then we write S ⊢ Γ ⇒ A. A rule R of inference holds for a system S if the following
condition is satisfied. For any instance of the following sequent of R, if S ⊢ Γi ⇒ Ai for all
i, then S ⊢ ∆⇒ B.

Γ1 ⇒ A1 . . . Γn ⇒ An

∆⇒ B

Moreover, R is said to be derivable in S if there is a derivation from Γ1 ⇒ A1, . . . , Γn ⇒ An

to ∆⇒ B in S.
To accommodate the Gentzen system to partial logics, we need some concepts of partial

semantics. In the Beth tableau, It is assumed that V is a partial valuation function assigning
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the values 0 or 1 to an atomic formula p. We can then set V(p) = 1 for p on the left-hand
side and V(p) = 0 for p on the right-hand side in an open branch of the tableau. To deal
with an uncertain concept in many-valued semantics, we need to introduce the consequence
relation [64]. Pre and Cons represent the sequent premise and conclusion, respectively, and
1 represents true and 0 false. First, we define the following concept of consequence relation
C1.

(C1) for all V , if V(Pre) = 1, then V(Cons) = 1.

In C1, if Pre is evaluated as 1, then Cons preserves 1. Here, we define a classical Gentzen
system.

Definition 3.14. The sequent calculus for the classical propositional logic CL is defined as
follows:

Axiom: A ⇒ A (ID)
Sequent rules:

Γ⇒ ∆
Γ′ ⇒ ∆′ (Weakening) Γ, A ⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆ (Cut)

(Γ ⊂ Γ′, and ∆ ⊂ ∆′)

A, Γ⇒ ∆
Γ⇒ ∆,∼A (∼R) Γ⇒ ∆, A

∼A, Γ⇒ ∆ (∼L)

Γ⇒ ∆, A Γ⇒ ∆, B
Γ⇒ ∆, A ∧ B (∧R) A, B, Γ⇒ ∆

A ∧ B, Γ⇒ ∆ (∧L)

Γ⇒ ∆, A, B
Γ⇒ ∆, A ∨ B (∨R) A, Γ⇒ ∆ B, Γ⇒ ∆

A ∨ B, Γ⇒ ∆ (∨L)

Γ⇒ ∆,∼A, B
Γ⇒ ∆, A → B (→R) Γ,∼A ⇒ ∆ B, Γ⇒ ∆

A → B, Γ⇒ ∆ (→L)

Theorem 3.5. The logic for C1 is axiomatized by the Gentzen sequent calculus CL.

Proof. See [63],[65],[3]. □

Next, we define the sequent calculus GC1 for C1 that can be obtained by adding the
following rules to CL without (∼R) such as CL\{(∼ R)}, where, "\" implies that the rule
following "\" is excluded:
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Γ⇒ ∆, A
Γ⇒ ∆,∼∼A (∼∼R) A, Γ⇒ ∆

∼∼A, Γ⇒ ∆ (∼∼L)

Γ⇒ ∆,∼ A,∼ B
Γ⇒ ∆,∼(A ∧ B) (∼∧R) ∼A, Γ⇒ ∆ ∼B, Γ⇒ ∆

∼ (A ∧ B), Γ⇒ ∆ (∼∧L)

Γ⇒ ∆,∼A Γ⇒ ∆,∼B
Γ⇒ ∆,∼ (A ∨ B) (∼ ∨ R) ∼A,∼B, Γ⇒ ∆

∼(A ∨ B), Γ⇒ ∆ (∼ ∨ L)

It is worth noting that the three-valued logic by Kleene has no tautology. Thus, to define
a consequence relation, a tableau system for a three-valued logic is formalized [65] [3].
Then, the consequence relation C2 is defined as follows:

(C2) for all V , if V(Pre) = 1, then V(Cons) , 0.

C2 is interpreted as exclusion; then, the consequence relation C2 is regarded for Kleene’s
strong three-valued logic K3. As the semantics for C2, we define the extension of the
valuation function VC2(p) with v(p) for an atomic formula p as follows:

T =def VC2(p) = {1} =def v(p) = 1 and v(p) , 0,

F =def VC2(p) = {0} =def v(p) = 0 and v(p) , 1,

N =def VC2(p) = {} =def v(p) , 1 and v(p) , 0.

The interpretation of C2 by the partial semantics is given as follows:

Definition 3.15. Γ |=s φ iff there is no φ that is not F under VC2 (in the three-valued
{T,F,N}) and for all γ ∈ Γ, γ is T under VC2.

The Gentzen-type sequent calculus GC2 axiomatizes C2 [3][65]. We are now in a
position to define GC2. For GC2, the principle of explosion (ex falso quodlibet (EFQ)),
defined below, is added to TG1\{(∼ L)}.

(EFQ) A,∼ A ⇒

Definition 3.16. The sequent calculus GC2 is defined as follows:
GC2 := {(ID), (Weakening), (Cut), (EFQ), (∧R), (∧L), (∨R), (∨L), (→R), (→L),

(∼∼R), (∼∼L), (∼∧R), (∼∧L), (∼ ∨ R), (∼ ∨ L)}.

GC2 can be interpreted as truth preserving with the matrix of a three-valued logic defined
as ⟨{T, F, N}, {T}, {∼,∨,∧,→}⟩. For the rule (∼L) obtained from (EFQ), GC2 and GC1 are
equivalent.

Theorem 3.6. GC2 = GC1.
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Proof. (EFQ) can be considered as (∼L); then, double negation and the de Morgan laws in
GC2 are obtained. □

In the classical interpretation of CL, the law of excluded middle (EM) holds but not in C2.
Then, the rule C2 for the Gentzen system is axiomatized as GC2.

Theorem 3.7. C2 can be axiomatized by the sequent calculus GC2.

Proof. See [65][3]. □

Theorem 3.8. In the model for C2, S, DL-language L, and formula φ, it is not the case that
M |=+v φ and M |=−v φ hold.

Proof. Only the proof for ∼ and ∧ will be provided. It can be carried out by induction on
the complexity of the formula. The condition of consistent implies that it is not the case that
φ ∈ S+ and φ ∈ S−. Then, it is not the case that M |=+v φ and M |=−v φ.

∼: We assume that M |=+v∼ φ and M |=−v∼ φ hold. Then, it follows that M |=+v φ and
M |=−v φ. This is a contradiction.

∧: We assume that M |=−v φ ∧ ψ and M |=+v φ ∧ ψ hold. Then, it follows that M |=+v φ,
M |=+v ψ and either M |=−v φ or M |=−v ψ. In either case, there is a contradiction. □

Next, we provide another consequence relation with a different interpretation for the
third-value below.

(C3) for all V , if V(Pre) , 0, then V(Cons) = 0.

C3 is interpreted as exhaustion, then the consequence relation C3 is for Logic for Paradox
[57]. As the semantics for C3, we define the extension of the valuation function VC3(p) with
v(p) for an atomic formula p as follows:

T =def VC3(p) = {1} =def v(p) = 1 and v(p) , 0,

F =def VC3(p) = {0} =def v(p) = 0 and v(p) , 1,

B =def VC3(p) = {1, 0} =def v(p) = 1 and v(p) = 0.

The interpretation of C3 by the partial semantics is given as follows:

Definition 3.17. Γ |=v φ iff there is φ that is T under VC3 (in the three-valued {T,F,B})
and for all γ ∈ Γ, γ is not F under VC3.

The Gentzen sequent calculus GC3 is obtained from GC2, replacing EFQ with EM
(excluded middle) as an axiom:

(EM) ⇒ A,∼A
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Definition 3.18. The sequent calculus GC3 is defined as follows:
GC3 := {(ID), (Weakening), (Cut), (E M), (∧R), (∧L), (∨R), (∨L), (→R), (→L),

(∼∼R), (∼∼L), (∼∧R), (∼∧L), (∼ ∨ R), (∼ ∨ L)}.

Theorem 3.9. C3 can be axiomatized by the Gentzen calculus GC3.

Proof. GC3 can be obtained by deriving double negation and two de Morgan laws in GC3.
The (∼R) rule can be provided as EM. □

Next, we extend consequence relation C4 as follows:

(C4) for all V , if V(Pre) , 0, then V(Cons) , 0.

C4 is regarded as a four-valued logic since it allows for an inconsistent valuation. We
are now in a position to define Belnap’s four-valued logic B4.

As the semantics for GC4, Belnap’s B4 is adopted here. We define the extension of the
valuation function VC4(p) with v(p) for an atomic formula p as follows:

T =def VC4(p) = {1} =def v(p) = 1 and v(p) , 0,

F =def VC4(p) = {0} =def v(p) = 0 and v(p) , 1,

N =def VC4(p) = {} =def v(p) , 1 and v(p) , 0,

B =def VC4(p) = {1, 0} =def v(p) = 1 and v(p) = 0.

The interpretation of C4 by the partial semantics is given as follows:

Definition 3.19. Γ |=v φ iff there is no φ that is not F under VC4 (in 4) and for all γ ∈ Γ, γ
is not F under VC4.

Definition 3.20. The sequent calculus GC4 is defined as follows:
GC4 := {(ID), (Weakening), (Cut), (∧R), (∧L), (∨R), (∨L), (∼∼R), (∼∼L),

(∼∧R), (∼∧L), (∼ ∨ R), (∼ ∨ L)}.

Theorem 3.10. C4 can be axiomatized by the sequent calculus GC4.

Proof. GC4 can be obtained by deriving double negation and two de Morgan laws in GC4.
The (F∼) rule can be provided as EM. □
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3.6 Extension of Many-valued Semantics

We introduce three-valued logics and provide some relationship and properties between the
consequence relations we denotated in the previous section.
Kleene’s strong three-valued logic: Kleene proposed three-valued logics to deal with
undecidable sentences in connection with recursive function theory [32]. Thus, the third
truth-value can be interpreted as undecided in the strong Kleene logic K3, which is of
special interest to describe a machine’s computational state. K3 can give a truth value to a
compound sentence even if some of its parts have no truth value. Kleene also proposed the
weak three-valued logic in which the whole sentence is undecided if any component of a
compound sentence is undecided.

The truth tables for K3 are defined as follows:

∼ T F N

F T N

∧ T F N

T T F N

F F F F

N N F N

∨ T F N

T T T T

F T F N

N T N N

→ T F N

T T F N

F T T T

N T N N

The implication → can be defined in the following way:

A → B =de f ∼A ∨ B

The axiomatization of K3 by a Gentzen-type sequent calculus can be found in the
literature [64].

Let |= be the consequence relation of K3. Then, we have the following Gentzen-type
sequent calculus GK3 for K3, which contains an axiom of the form

X |= Y ifX ∩ Y , ∅
and the rules (Weakening), (Cut), and
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A |= ∼∼A, ∼∼A |= A, A,∼A |=,

A, B |= A ∧ B, A ∧ B |= A, A ∧ B |= B,

∼A |= ∼(A ∧ B), ∼B |= ∼(A ∧ B),

∼(A ∧ B) |= ∼A,∼B.

GC2 is considered as Kleene’s strong three-valued logic K3. The implication of K3 does
not satisfy the deduction theorem. In addition, A → A is not a theorem in K3.

Theorem 3.11. |=K3 = ⊢C2, where |=K3 denotes the consequence relation of K3.

Proof. By induction on K3 and GC2. It is easy to transform each proof of K3 into GC2.
The converse transformation can be also presented. □

Łukasiewicz three-valued logic: Łukasiewicz’s (1920) three-valued logic was proposed in
order to interpret a future contingent statement in which the third truth-value can be read as
indeterminate or possible. Thus, in Łukasiewicz’s three-valued logic L3, neither the law of
excluded middle nor the law of non-contradiction holds. The difference between K3 and L3

lies in the interpretation of implication, as the truth table indicates.
It is also possible to describe the Hilbert presentation of L3. Let ⊃ be the Łukasiewicz

implication. Then, we can show the following axiomatization of L3 due to Wajsberg. It
has been axiomatized by Wajsberg (1993) in [64] using a language based on (∨, ⊃,∼), the
modus ponens rule and the following axioms:

(W1) (p ⊃ q) ⊃ ((p ⊃ r) ⊃ (p ⊃ r)),
(W2) (∼p ⊃ ∼q) ⊃ (q ⊃ p)),
(W3) (((p ⊃ ∼p) ⊃ p) ⊃ p).

They are closed under the rules of substitution and modus ponens. Unlike in K3, A ⊃ A is
a theorem in L3. It is noted, however, that the philosophical motivation of L3 in connection
with Aristotelian logic can be challenged. For a review of various three-valued logics, see
Urquhart [64].

65



3.6. Extension of Many-valued Semantics

⊃ T F N

T T F N

F T T T

N T N T

The definition of the semantic relation for the implication of L3 is obtained by replacing
the implication in Definition 3.11 with the following definition:

M |=+v φ → ψ iff M |=−v φ or M |=+v ψ or

(M ̸|=+v φ and M ̸|=−v φ and M ̸|=+v ψ and M ̸|=−v ψ).
M |=−v φ → ψ iff M |=+v φ and M |=−v ψ.

Logic of Paradox (LP): Logic of Paradox (LP) has been studied by Priest [57], which is
one of the paraconsistent logics excluding EFQ. As motivation for paraconsistent logics in
general, LP can treat various logical paradoxes and Dialetheism, which is a philosophical
position that admits some true contradictions. GC3 is taken as a sequent calculus of LP [58],
and the truth table of LP can be obtained K3’s truth value N replaced with B.
The definition of the semantic relation for the implication of GC3 is obtained by replacing
the implication in Definition 3.11 with the following definition.

M |=+v φ → ψ iff M ̸|=+v φ or M ̸|=−v ψ or

(M |=+v φ and M |=−v φ and M |=+v ψ and M |=−v ψ).
M |=−v φ → ψ iff M |=+v φ and M |=−v ψ.

Belnap’s four-valued logic: In section III, we have already seen the Belnap’s four-valued
logic. In addition to section III, we define the truth tables for ∼, ∧, and ∨.

In this paper, the implication of B4 is defined with ∼ and ∨ and it does not hold for the
rule of modus ponens because the disjunctive syllogism does not hold.

∼ T F N B

F T N B
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∧ T F N B

T T F N B

F T T T T

N T T T T

B T F N B

∨ T F N B

T T F N B

F T T T T

N T T T T

B T F N B

The aim of this paper is to present many-valued semantics for the decision logic. There
are three candidates of consequence relations for the enhancement in the decision logic.
GC2, which was discussed above, is interpreted as strong Kleene three-valued logic. The
value of a proposition is neither true nor false in GC2. In this case, the designated value
of GC2 is defined as {T, N}. GC3 is a paraconsistent logic, and its designated valued is
defined as {T, B}. The paraconsistent logic does not hold for the principle of explosion (ex
falso quodlibet); therefore, it is possible to interpret the consequence relation by C3. GC4 is
obtained from C4 based on four-valued semantics and interpreted as both paracomplete and
paraconsistent.

Here, we present the extended version of many-valued logics with weak negation ¬.
Weak negation represents the lack of truth. The assignment of weak negation is defined as
follows:

∥¬φ∥s =


T if ∥φ∥s , T

F otherwise

Weak implication is defined as follows:

A →w B =de f ¬A ∨ B

The assignment of weak implication is defined as follows:

∥A →w B∥s =


∥B∥s if ∥A∥s ∈ D

T if ∥A∥s < D
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We represent the truth tables for ¬ and →w below.

¬ T F N B

F T T F

→w T F N B

T T F N B

F T T T T

N T T T T

B T F N B

The semantic relation for weak negation is as follows:

M |=+v ¬φ iff M ̸|=+v φ,
M |=−v ¬φ iff M |=+v φ.

We try to extend many-valued logics with weak negation and weak implication. This
regains some properties that some many-valued logics lack, such as the rule of modus ponens
and the decision theorem. Obviously, L3 recovers some properties that K3 lacks and L3’s
implication and weak implication has a close relationship.

Weak negation can represent the absence of truth. However, ∼ can serve as strong
negation to express the verification of falsity. Note also that weak implication obeys the
deduction theorem. This means that it can be regarded a logical implication. We can also
interpret weak negation in terms of strong negation and weak implication:

¬A =de f A →w ∼A

We define the sequent rules for (¬) and (→w) as follows:

Γ, A ⇒ ∆
Γ⇒ ¬A,∆ (¬R) Γ⇒ A,∆

Γ,¬A ⇒ ∆ (¬L)

A, Γ⇒ ∆, B
Γ⇒ ∆, A →w B (→wR) B, Γ⇒ ∆ Γ⇒ ∆, A

A →w B, Γ⇒ ∆ (→wL)

GC2, GC3, and GC4 have additional rules of weak negation and weak implication, and
we obtain GC2+, GC3+, and GC4+. GC2+ is the same as the extended Kleene logic EKL, that
was proposed by Doherty [18] as the underlying three-valued logic for the non-monotonic
logic and is provided with the deduction theorem.

GC4+ is interpreted as both paracomplete and paraconsistent. This prevents the paradox
of material implication of classical logic.
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Here, it is observed that L3 can be naturally interpreted in GC2+. The Łukasiewicz
implication can be defined as

A ⊃ B =de f (A →w B) ∧ (∼B →w ∼A)

Next, we present the interpretation of weak negation for consequence relations C2, C3,
and C4, which are interpreted as K3, LP, and B4, respectively.

∥¬A∥C2 =


F if ∥A∥ = T

T if otherwise

∥¬A∥C3 =


T if ∥A∥ = F

F if otherwise

∥¬A∥C4 =


F if ∥A∥ = T or B

T if ∥A∥ = F or N

We consider an application of weak negation for the interpretation of rough sets.

Example 3.6.1. Suppose the definition of a decision table is the same as Example 1.
U = {x1, x2, x3, x4, x5, x6, x7, x8}
Attribute: C = {c1, c2, c3, c4}
c1 = {x1, x4, x8}, c2 = {x2, x5, x7}, c3 = {x3},
c4 = {x6}
U/C = c1 ∪ c2 ∪ c3 ∪ c4

Any subset X = {x3, x6, x8}
POSC(X) = c3 ∪ c4 = {x3, x6}
BNC(X) = c1 = {x1, x4, x8}
NEGC(X) = c2 = {x2, x5, x7}

The interpretation of the consequence relation C4 for weak negation in the decision table
is defined as follows:

If |Cc3 |S ⊆ POSC(X) then ¬∥Cc3∥v = F,
If |Cc2 |S ⊆ NEGC(X) then ¬∥Cc2∥v = T,
If |Cc2 |S ⊈ POSC(X) ∪ NEGC(X) then ¬∥Cc2∥v = T,
If |Cc1 |S ⊆ BNC(X) then ¬∥Cc1∥v = F.

69



3.7. Soundness and Completeness

3.7 Soundness and Completeness

The soundness and completeness theorem are shown for the sequent system GB4+. GB4+,
which was discussed above, is interpreted as Belnap’s four-valued logic B4 extended with
weak negation and weak implication. The sequent calculus GB4+ is defined as follows:

GB4+ := {(ID), (Weakening), (Cut), (∧R), (∧L), (∨R), (∨L), (∼∼R), (∼∼L),
(∼∧R), (∼∧L), (∼∨R), (∼∨L), (¬R), (¬L), (→wR), (→wL)}

It is assumed that GB4+ is the basic deduction system for decision logic obtained from
GB4 with weak negation and weak implication. This prevents the paradox of material
implication of classical logic. The semantic relation of model M for GB4+ is defined as
follows:

Definition 3.21. The semantic relations of M |=+GB4+ φ and M |=−GB4+ φ are defined as
follows:

M |=+GB4+ ⊤,
M |=−GB4+ ⊥,
M |=+GB4+ p iff p ∈ M+, where p is a propositional variable,
M |=−GB4+ p iff p ∈ M−, where p is a propositional variable,
M |=+GB4+ ∼φ iff M |=−GB4+ φ,
M |=−GB4+ ∼φ iff M |=+GB4+ φ,
M |=+GB4+ φ ∨ ψ iff M |=+GB4+ φ or M |=+GB4+ ψ,
M |=−GB4+ φ ∨ ψ iff M |=−GB4+ φ and M |=−GB4+ ψ,
M |=+GB4+ φ ∧ ψ iff M |=+GB4+ φ and M |=+GB4+ ψ,
M |=−GB4+ φ ∧ ψ iff M |=−GB4+ φ or M |=−GB4+ ψ,
M |=+GB4+ φ → ψ iff M |=−GB4+ φ or M |=+GB4+ ψ,
M |=−GB4+ φ → ψ iff M |=+GB4+ φ and M |=−GB4+ ψ.
M |=+GB4+ ¬φ iff M ̸|=+GB4+ φ,
M |=−GB4+ ¬φ iff M |=+GB4+ φ,
M |=+GB4+ φ →w ψ iff M ̸|=+GB4+ φ or M |=+GB4+ ψ,
M |=−GB4+ φ →w ψ iff

(M |=+GB4+ φ or (M |=+GB4+ φ and M |=−GB4+ φ)) and M |=−GB4+ ψ.

Lemma 3.12. The validity of the inference rules

1. The axioms of GB4+ are valid.
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2. For any inference rules of GB4+ and any valuation s, if s satisfies all of the formulas
of Pre, then s satisfies Cons.

Proof. 1) In GB4+, the axiom (ID) preserves validity.
For 2), the proof for structural rules (weakening) and (cut), (¬R), (→wL), and (∼∧L)

will be provided.
(weakening):

Γ⇒ ∆
Γ′ ⇒ ∆′ (Weakening)

Suppose that |=GB4+ Γ ⇒ ∆. Then, clearly V4(γ) , T for some γ ∈ Γ′ or V4(δ) , F for
some δ ∈ ∆′.

(cut):
Γ, A ⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆ (Cut)

Suppose that the principle is not correct, i.e. that (for some Γ,∆, A) we have
if (1) |=GB4+ Γ, A ⇒ ∆ and (2) |=GB4+ Γ⇒ A,∆ then (3) ̸ |=GB4+ Γ⇒ ∆.
Then by assumption (3) there is an interpretation V which assigns T to each formula in Γ,
but assigns F to ∆.

If A occurs in Γ or ∆, then V cannot assign F to A. By assumption (1) and (2), V cannot
assign F to ∆. This is a contradiction.

If A does not occur in Γ or ∆, then V is extended to V ′ by adding to its interpretation of
A. Since V ′ agrees with V on the interpretation of all the formula in Γ and ∆, it will still be
the case that V ′ assigns T to all formulae in Γ, and F to ∆. By the assumption (1) V ′ cannot
assign F to A, and the assumption (2) V ′ cannot assign T to A since it assigns T to all in Γ
but F to all in ∆. This is a contradiction.

(¬R):
Γ, A ⇒ ∆
Γ⇒ ¬A,∆ (¬R)

Suppose that |=GB4+ Γ, A ⇒ ∆. Then, either (4) V4(γ) , T for some γ ∈ Γ or V4(δ) , F
for some δ ∈ ∆ or (5) V4(A) , T. If (4) holds, then clearly |=GB4+ Γ ⇒ ¬A,∆ iff
|=−GB4+ Γ or |=+GB4+ ∆,¬A. If (5) holds, then from the definition of ¬, it follows that
V4(¬A) = T and then |=GB4+ Γ⇒ ¬A,∆.

(→wL): B, Γ⇒ ∆ Γ⇒ ∆, A
A →w B, Γ⇒ ∆ (→wL)

Suppose that |=GB4+ B, Γ ⇒ ∆, and Γ ⇒ ∆, A. Then, either (6) V4(γ) , T for some
γ ∈ Γ or V4(δ) , F for some δ ∈ ∆ or (7) V4(B) , F and V4(A) , T. If (6) holds, then
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clearly |=GB4+ A→wB, Γ ⇒ ∆. If (7) holds, then from the semantic relation of →w, it
follows that V4(A→wB) , F and again |=GB4+ A→wB, Γ⇒ ∆.

(∼∧L):

∼A, Γ⇒ ∆ ∼B, Γ⇒ ∆
∼ (A ∧ B), Γ⇒ ∆ (∼∧L)

Suppose that |=GB4+ ∼A, Γ⇒ ∆, and |=GB4+ ∼B, Γ⇒ ∆. Then, either (8) V4(γ) , T for
some γ ∈ Γ or V4(δ) , F for some δ ∈ ∆ or (9) V4(∼A) , T or V4(∼B) , T. If (8) holds,
then clearly |=GB4+ ∼(A ∧ B), Γ ⇒ ∆. If (9) holds, then from the definition of ∧, it follows
that V4(A ∧ B) , F, whence V4(∼(A ∧ B)) = F, and again |=GB4+ ∼(A ∧ B), Γ⇒ ∆. □

Lemma 3.13 (Soundness of GB4+). If ⊢GB4+ Γ⇒ ∆ is provable in GB4+, then |=GB4+ Γ⇒
∆.

Proof. If the sequent Γ⇒ ∆ is an instance of axiom (ID), then Γ⇒ ∆ is valid in GB4+. By
induction on the depth of a derivation of Γ ⇒ ∆ in GB4+, it follows, by Lemma 3.12, that
the sequent Γ⇒ ∆ is valid in GB4+. □

We are now in a position to prove the completeness of GB4+. The proof below is similar
to the Henkin proof described in Avron [8].

Theorem 3.14 (Completeness of GB4+). The sequent calculus GB4+ is sound and complete
for |=GB4+ .

Proof. Let us denote the provability in GB4+ by ⊢GB4+ . For any sequent Σ over the language
of GB4+,

⊢GB4+ Σ if Σ has a proof in GB4+.

We have to prove that, for any sequent Σ over the language of GB4+,

|=GB4+ Σ iff ⊢GB4+ Σ.

The backward implication, representing the soundness of the system, follows immediately
from Lemma 3.13. To prove the forward implication completeness, we argue by contradic-
tion. Suppose Σ is a sequent such that ⊬GB4+ Σ. We shall prove that ̸ |=GB4+ Σ. Let us assume
that the inclusion and union of sequents are defined componentwise, i.e.,

(Γ′ ⇒ ∆′) ⊆ (Γ′′ ⇒ ∆′′) iff Γ′ ⊆ Γ′′ and ∆′ ⊆ ∆′′,
(Γ′ ⇒ ∆′) ∪ (Γ′′ ⇒ ∆′′) = Γ′, Γ′′ ⇒ ∆′,∆′′.
A sequent Σ0 is called saturated if it is closed under all of the rules in GB4+ applied

backwards. More exactly, for any rule r in GB4+ whose conclusion is contained in Σ0,
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one of its premises must also be contained in Σ0 (for a single premise rule, this means its
only premise must be contained in Σ0). For example, if Σ0 = (Γ0 ⇒ ∆0) is saturated and
(A → B) ∈ ∆0, then in view of the rules (→R), we must have both ∼A ∈ ∆ and B ∈ ∆. In
turn, if (A → B) ∈ Γ0, then in view of the rule (→L), we must have either ∼A ∈ Γ or B ∈ Γ.

Let Σ = (Γ⇒ ∆) be any sequent. We shall first prove that Σ can be extended to a saturated
sequent Σ∗ = (Γ∗ ⇒ ∆∗), which is not provable in GB4+. If Σ is already saturated, we are
done. Otherwise, we start with the sequent Σ and expand it step by step by closing it under
the subsequent rules of GB4+ without losing the non-provability property. Specifically, we
define a sequence Σ0, Σ1, Σ2, . . . such that

1. Σi−1 ⊆ Σi for each i ≥ 1,

2. Σi is not provable.

We take Σ0 = Σ1 = Σ; then, conditions 1 and 2 above are satisfied for i = 1. Assume
that we have the constructed sequents Σ0, Σ1, . . . , Σk satisfying those conditions, and Σk is
still not saturated. Then, there is a rule

r =
Π1 · · · Πl

Π

in GB4+ such that Π ⊆ Σk but Πi ⊈ Σk for i = 1, . . . , l .
Since Σk is not provable, there must be an i such that Σk ∪ Πi is not provable. Indeed, if

Σi ∪ Πi were provable for all i, 1 ≤ i ≤ l, then we could deduce Σk ∪ Π from the provable
sequents Σk ∪ Πi, i = 1, . . . , l, using rule r , which in view of Σk ∪ Π = Σk would contradict
the fact that Σk is not provable. Thus, there is an i0, 1 ≤ i0 ≤ l, such that Σk ∪ Πi0 is not
provable, and we take Σk+1 = Σk ∪ Πi0 . Obviously, the sequents Σ0, Σ1, . . . , Σk+1 satisfy
conditions 1 and 2 above.

After a finite number n of such steps, we will have added all possible premises of the
rules r in GB4+ whose conclusions are contained in the original sequent Σ or its descendants
in the constructed sequence, obtaining a saturated extension Σ∗ = Σn of Σ, which is not
provable in GB4+.

Thus, we have

• Σ∗ = (Γ∗ ⇒ ∆∗) is closed under the rules in GB4+ applied backwards,

• Γ ⊆ Γ∗,∆ ⊆ ∆∗,
• ⊢GB4+ Σ

∗.
We use Σ∗ to define a counter-valuation for Σ, i.e., a legal valuation V4 under the model of
GB4+ such that |=GB4+ Σ. For any propositional symbol p ∈ P evaluated with the following
valuation function, namely, we put:
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V4(p) =



T if p ∈ Γ and p < ∆,

F if ∼p ∈ Γ and ∼p < ∆,

B if {p,∼p} ∈ Γ,

N otherwise.

(3.1)

For the valuation for the weak negation in GB4+, define the following:

V4(¬p) =


T if V4(p) ∈ {F,N},
F if V4(p) ∈ {T,B}.

(3.2)

For any A, B of the set of all well-formed formulas of GB4+,

V4(∼A) = ∼V4(A). (3.3)

V4(A →w B) =


T if V4(A) ∈ {F,N} or V4(B) = T,

F if V4(A) = T and V4(B) = F.
(3.4)

For ∧ and ∨, we will write ⊓ for the meet and ⊔ for the join of ≤ order on 4.

V4(A ∧ B) = V4(A) ⊓ V4(B). (3.5)

V4(A ∨ B) = V4(A) ⊔ V4(B). (3.6)

It is easy to see that V4 defined as above is a well-defined mapping of the formulas of
GB4+ into 4. Indeed, as Σ∗ is not provable in GB4+, then by (1), V4(p) is uniquely defined for
any propositional symbol p, whence by (2, 3), V4(φ) is uniquely defined for any well-formed
formula.

Moreover, by (2, 3), V4 is a legal interpretation of the language of GB4+ under the
interpretation of GB4+, for the interpretations of ∼,→w under V4 are compliant with the
truth tables of those operations for this interpretation.

As Σ∗ is an extension of Σ, in order to prove that ̸ |=GB4+ Σ, it suffices to prove that
̸ |=GB4+ Σ

∗. We should prove for any well-formed formulas φ,

|=GB4+ γ for any γ ∈ Γ∗, ̸ |=GB4+ δ for any δ ∈ ∆∗. (3.7)
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Equation (3.7) is proved by structural induction on the formulas in S = Γ∗ ∪ ∆∗.
We begin with literals in S, having the form of either p or ∼p, where p ∈ P. We have

the following cases:

• φ = p. Then, by (1) and the fact that Γ∗ and ∆∗ are disjoint (for otherwise Σ∗ would
be provable), we have: V4(φ) , F if φ ∈ Γ∗ and V4(φ) , T if φ ∈ ∆∗

• φ = ∼p. If φ ∈ Γ∗, then by (1), V4(p) , T, whence V4(φ) = ∼F = T by (3). In turn,
if φ ∈ ∆∗, then φ < Γ∗, whence V4(p) , F and V4(φ) = ∼V4(p) , T.

• φ = ¬p. If φ ∈ Γ∗, then by (1) V4(p) , T or V4(p) , B, whence V4(φ) = T
by (2). In turn, if φ ∈ ∆∗, then φ < Γ∗, whence V4(p) , F or V4(p) , N and
V4(φ) = ∼V4(p) = F.

Here, we define the rank ρ of formula φ by

ρ(p) = 1, ρ(∼φ) = ρ(φ) + 1, ρ(φ → ψ) = ρ(φ) + ρ(ψ) + 1

Now we assume that the definition in (3.7) is satisfied for the formulas in S of rank up to n
and suppose that A, B ∈ S are at most of rank n. We prove that (3.7) holds for ∼B, B ∧ C
and B ∨ C.

We begin with negation. Let φ = ∼A. As the case of A = p ∈ P has already been
considered, it remains to consider the following two cases:

• A = ∼B. Then, we have φ = ∼∼B.

– If φ ∈ Γ∗, then by rule (∼∼L), we have B ∈ Γ∗, since Σ∗ is a saturated sequent.
Hence, by inductive assumption, V4(B) = T, and by (3), V4(φ) = ∼∼T = T.

– In turn, if φ ∈ ∆∗, then by rule (∼∼R), we have B ∈ ∆∗, whence by inductive
assumption, V4(B) = F, and in consequence, V4(φ) = ∼∼F = F.

• A = B ∧ C. We again have two cases:

– If φ ∈ Γ∗, then by rule (∼∧L), we have∼B,∼C ∈ Γ∗ since Σ∗ is saturated. Hence,
by inductive assumption, V4(B) , T and V4(C) , T (because V4(∼B) , F and
V4(∼C) , F). Thus, by the truth table V4(B ∧ C) , T; therefore, V4(φ) = ∼F =
T.

– If φ ∈ ∆∗, then by rule (∼∧R), we have either ∼B ∈ ∆∗ or ∼C ∈ ∆∗. By inductive
assumption, this yields either V4(B) , T or V4(C) , T. Thus, by the truth table,
V4(B ∧ C) , T, whence V4(φ) = ∼T = F.

• A = B ∨ C. We again have two cases:
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– If φ ∈ Γ∗, then by rule (∼∨L), we have∼B,∼C ∈ Γ∗ since Σ∗ is saturated. Hence,
by inductive assumption, V4(B) , T and V4(C) , T (because V4(∼B) , F and
V4(∼C) , F). Thus, V4(B ∨ C) , T, and V4(φ) = ∼F = T.

– If φ ∈ ∆∗, then by rule (∼∨R) we have either ∼B ∈ ∆∗ or ∼C ∈ ∆∗. By inductive
assumption, this yields either V4(B) , F or V4(C) , F. Thus, V4(B ∨ C) , F,
whence V4(φ) , T = F.

It remains to consider implication. Let φ = A →w B. We have the following two cases:

• φ ∈ Γ∗. Then, as Σ∗ is saturated, by rule (→wL), we have either A ∈ ∆∗ or B ∈ Γ∗.
In view of (1) and (3), and the fact that φ < ∆∗, this yields either V4(A) ∈ {F,N} or
V4(B) ∈ {T,B}. Thus V4(A →w B) , F, and V4(φ) = T.

• φ ∈ ∆∗. Then, as Σ∗ is saturated, by rules (→wR) we have A ∈ Γ∗ and B ∈ ∆∗. In view
of (1) and (3), and the fact that φ < Γ∗, this yields V4(A) ∈ {T,B} and V4(B) ∈ {F,N},
thus, V4(A →w B) , T, and V4(φ) = F.

Thus, (3.7) holds, and |=GB4+ Σ, which ends the completeness proof. □

GB4+ may be one candidate for the extended version of decision logic that is needed to
handle uncertain information and be tolerant to inconsistency.

3.8 Conclusion and Future Work

In this paper, we propose an extension of the decision logic of rough sets to handle uncertainty,
ambiguity and inconsistent states in information systems based on rough sets. We investigate
some properties of information system based on rough sets and define some characteristics
of a certain relationship for the interpretation of truth values. We obtain some observations
for a relationship between the interpretation with four-valued truth values and the regions
defined with rough sets. To handle these characteristics we have introduced partial semantics
with consequence relations for the axiomatization with many-valued logics and proposed
a unified formulation of the decision logic of rough sets and many-valued logics. We also
extend the language of many-valued logics with weak negation to enable the deduction
theorem or the rule of modus ponens. We have shown that the system GC4+ is sound and
complete with Belnap’s four-valued semantics.

In future work, the extension of language should be investigated, e.g., an operator to
handle the granularity of objects or the uncertainty of a proposition, which is related to some
kind of modal operators to recognize the crispness of objects. In this paper, we introduce rules
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of weak negation and weak implication to extend many-valued logics to handle a deduction
system more usefully. To grasp the information state represented with information in detail,
another extension of language should be investigated, such as modal type operators in a
paraconsistent version of Łukasiewicz logic J3 [22]. Furthermore, we need to investigate
another version of decision logics based on an extended version of rough set theories, e.g.,
the variable precision rough set (VPRS) [68]. VPRS models are an extension of rough set
theory, which enables us to treat probabilistic or inconsistent information in the framework
of rough sets. By these further investigations, a much more useful version of extended
decision logic is expected for practical application and actual data analytics.
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Chapter 4

Tableau Calculi for Many-Valued Logic

Abstract Rough sets theory is used to handle uncertain and inconsistent information. While,
Pawlak’s decision logic of rough sets is based on classical bivalence logic, this may cause
a limitation for the various reasoning. In this study, we propose four-valued logics, as the
deduction basis for the decision logic. To provide four-valued semantics to decision logic
of rough set, we introduce a Ziarko’s variable precision rough set. As a deductive system,
we adopt tableau calculi and define a consequence relation to construct deductive system
based on four-valued semantics. Furthermore, weak-negation is introduced to compensate
the deduction property of four-value logics. Finally, we discuss Henkin-type proof of the
completeness theorem for the system.

4.1 Introduction

This chapter is an extended version of Nakayama et al. [52]. This chapter aims to present
many-valued semantics and tableau calculus as a deduction basis for the decision logic.
Rough set theory was studied by Pawlak for handling rough and coarse information [54,
55]. In applying rough set theory, decision logic was proposed by Pawlak for interpreting
information extracted from data tables. However, decision logic is based on the premise that
data tables are consistent and defined with the classical two-valued logic. It is known that
classical logic is not adequate for reasoning with undefined and inconsistent information.

To handle incomplete information, we introduce for Belnap’s four-valued logic. In Bel-
nap [10], he claimed that both incomplete and inconsistent information should be expressed
in a database. Therefore, four-valued logic is suitable to handle inconsistency on decision
tables and it can serve as deductive basis for decision logic. At the same time, to define four-
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valued interpretation to inconsistent data table, we introduce Variable precision rough set
(for short, VPRS). VPRS model was proposed by Ziarko [68] to grasp inconsistent state of
data table. VPRS is an extension of Pawlak’s rough set theory which provides a theoretical
basis to treat probabilistic or inconsistent information in the framework of rough sets.

Belnap’s four-valued logic serves to compensate VPRS as following meanings. Four-
valued semantics can handle both inconsistent information and incomplete information
represented with VPRS, and four-valued logic can provide a proof theoretic formulation to
serve as a deduction basis for VPRS. For example, VPRS can represent objects in a boundary
region as undefined or inconsistent. Additionally, VPRS can also represent objects both true
and false at the same time by an intersection of β-positive region and β-negative region.
Four-valued logic can handle in these cases and also provide deduction basis for decision
tables. As for a proof system in this study, we adopt tableau calculi as a basis for deductive
system and show the Henkin type soundness and completeness proof for many-valued tableau
calculus.

The deductive system of decision logic has been studied from the granule computing
perspective, and in Fan et al.[23], an extension of decision logic was proposed for handling
uncertain data tables by fuzzy and probabilistic methods. In Lin and Qing [38], a natural
deduction system based on classical logic was proposed for decision logic in granule com-
puting. In Avron and Konikowska [8], Gentzen-type three-valued sequent calculus were
proposed for rough set theory based on non-deterministic matrices for semantic interpre-
tation. Gentzen type axiomatization of three-valued logics based on partial semantics for
decision logic is proposed in Nakayama et al.[49]. Vitória et al.[66] propose set-theoretical
operations on four-valued sets for rough sets. The reasoning on rough sets is comprehensively
studied in Akama et al.[2].

The paper is organized as follows. In Section 4.2, an overview of rough sets, decision
logic and Belnap’s four-valued logic is presented. In Section 4.3, semantic interpretation
between rough sets and a four-valued logic is investigated, and we propose systematization
with tableau calculi for deduction system for four-valued semantics. In Section 4.4, A
Henkin-style completeness proof is provided for four-valued semantics extended with weak
negation. Finally, in Section 4.5, a summary of the study and possible directions for future
work are provided.
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4.2 Background

4.2.1 Rough Set and Decision Logic

Rough set theory, proposed by Pawlak [1], provides a theoretical basis of sets based on
approximation concepts. A rough set can be seen as an approximation of a set. It is denoted
by a pair of sets, called the lower and upper approximation of the set. Rough sets are used
for imprecise data handling. For the upper and lower approximations, any subset X of U
can be in any of three states, according to the membership relation of objects in U. If the
positive and negative regions on a rough set are considered to correspond to the truth value
of a logical form, then the boundary region corresponds to ambiguity in deciding truth or
falsity. Thus, it is plausible to adopt three-valued and four-valued logics for the basis for
rough sets.

Rough set theory is outlined below. Let U be a non-empty finite set, called a universe of
objects. If R is an equivalence relation on U, then U/R denotes the family of all equivalence
classes of R, and the pair (U, R) is called a Pawlak approximation space, which is defined as
follows:

Definition 4.1. Let R be an equivalence relation of the approximation space S = (U, R),
and X any subset of U. Then, the lower and upper approximations of X for R are defined as
follows:

RX =
∪{Y ∈ U/R | Y ⊆ X} = {x ∈ U | [x]R ⊆ X} ,

RX =
∪{Y ∈ U/R | Y ∩ X , 0} = {x ∈ U | [x]R ∩ X , ∅} .

Definition 4.2. If S = (U, R) and X ⊆ U, then the R-positive, R-negative, and R-boundary
regions of X with respect to R are defined respectively as follows:

POSR(X) = RX

NEGR(X) = U − RX

BNR(X) = RX − RX

Objects included in R-boundary is interpreted as undefined and inconsistent.

In general, targets of a decision logic is described by table-style format called information
tables. Information table that was used by Pawlak [55] defined by T = (U, A,C,D), where
U is a finite and nonempty set of objects, A is a finite and nonempty set of attributes. C
and D be subsets of a set of attribute A, C,D ⊆ A, and it is assumed that C is a conditional
attribute and D a decision attribute.
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Definition 4.3. The set of formulas of the decision logic language DL is the smallest set
satisfying the following conditions:

1. (a, v), or in short av, is an atomic formula of DL, where the set of attribute constants
is defined as a ∈ A and the set of attribute value constants is v ∈ V =

∪
Va.

2. If φ and ψ are formulas of the DL, then ∼φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, and φ ≡ ψ are
formulas.

The interpretation of DL is performed using the universe U in the Knowledge Represen-
tation System (KR-system) K = (U, A) and the assignment function s, mapping from U to
objects of formulas defined as follows:

|φ|S = {x ∈ U : x |=S φ}.
Formulas of DL are interpreted as subsets of objects consisting of a value v and an attribute
a.

The semantic relations of compound formulas are recursively defined as follows:
x |=S a(x, v) iff a(x) = v,
x |=S ∼φ iff x ⊭S φ,
x |=S φ ∨ ψ iff x |=S φ or x |=S ψ,
x |=S φ ∧ ψ iff x |=S φ and S |=S ψ,
x |=S φ → ψ iff x |=S ∼φ ∨ ψ,
x |=S φ ≡ ψ iff x |=S φ → ψ and s |=S ψ → φ.
Let φ be an atomic formula of DL, R ∈ C ∪ D an equivalence relation, and X any subset

of U, and a valuation v of propositional variables.

∥φ∥v =


t if |φ|S ⊆ POSR(U/X)
f if |φ|S ⊆ NEGR(U/X)

.

This shows that decision logic is based on bivalent logic.

4.2.2 Variable Precision Rough Set

Variable precision rough set models (for short, VPRS) proposed by Ziarko [68] is one
extension of Pawlak’s rough set theory which provides a theoretical basis to treat probabilistic
or inconsistent information in the framework of rough sets.

VPRS is based on the majority inclusion relation. Let X , Y ⊆ U be any subsets of U.
The majority inclusion relation is defined by the following measure c(X,Y ) of the relative
degree of misclassification of X with respect to Y ,
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c(X,Y ) =def


1 − |X ∩ Y |

|X | , if X , ∅,

0, otherwise.

where |X | represents the cardinality of the set X . It is easy to confirm that X ⊆ Y holds, if
and only if cd(X,Y ) = 0.

Formally, the majority inclusion relation ⊆ with a fixed precision b ∈ [0, 0.5) is defined
using the relative degree of misclassification as follows:

X
β
⊆ Y iff c(X,Y ) ≤ β,

where the precision b provides the limit of permissible misclassification.
Let X ⊆ U be any set of objects, R be an indiscernibility relation on U, and a

degree β ∈ [0, 0.5) be a precision. The β-lower approximation Rβ(X) of X and the
β-upper approximation Rβ(X) of X by R are defined as follows, respectively:

Rβ(X) =def {x ∈ U | c([x]R, X) ≤ β} ,
Rβ(X) =def {x ∈ U | c([x]R, X) ≤ 1 − β} .

As mentioned previously, the precision β represents the threshold degree of misclassification
of elements in the equivalence class [x]R to the set X . Thus, in VPRS, misclassification of
elements is allowed if the ratio of misclassification is less than β. Note that the β-lower and
β-upper approximations with β = 0 correspond to Pawlak’s lower and upper approximations.

4.2.3 Belnap’s Four-Valued Logic

Belnap [10] first claimed that an inference mechanism for database should employ a certain
four-valued logic. The important point in Belnap’s system is that we should deal with
both incomplete and inconsistent information in databases. To represent such information,
we need a four-valued logic, since classical logic is not appropriate to the task. Belnap’s
four-valued semantics can be in fact viewed as an intuitive description of internal states of a
computer.

In Belnap’s four-valued logic B4, four kinds of truth-values are used from the set 4 =
{T, F, N, B}. These truth-values can be interpreted in the context of a computer, namely
T means just told True, F means just told False, N means told neither True nor False, and
B means told both True and False. Intuitively, N can be interpreted as undefined, and B as
overdefined, respectively.

Belnap outlined a semantics for B4 using the logical connectives. Belnap’s semantics
uses a notion of set-ups mapping atomic formulas into 4. A set-up can then be extended for
any formula in B4 in the following way:
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s(A & B) = s(A) & s(B),
s(A ∨ B) = s(A) ∨ s(B),
s(∼A) = ∼s(A).
Belnap also defined a concept of entailments in B4. We say that A entails B just in case

for each assignment of one of the four values to variables, the value of A does not exceed the
value of B in B4, i.e. s(A) ≤ s(B) for each set-up s. Here, ≤ is defined as: F ≤ B, F ≤ N,
B ≤ T, N ≤ T. Belnap’s four-valued logic in fact coincides with the system of tautological
entailments due to Anderson and Belnap [4]. Belnap’s logic B4 is one of paraconsistent
logics capable of tolerating contradictions. Belnap also studied implications and quantifiers
in B4 in connection with question-answering systems.

Definition 4.4 (Partial Model). A partial model for decision logic language DL is a tuple
M = (T ,D,O), where

• T is a non-empty set of truth-values defined as 4 = {T,F,N,B}.

• ∅ ⊂ D ⊆ T is the set of designated values defined as D = {T,B}.

• For every n-ary connective ⋄ of DL, O includes a corresponding n-ary function
∼⋄

from T n to 4.

4.2.4 Analytic Tableaux

For a deduction system based on a four-valued logic, we focus on the partial semantics. In
classical logic, partial semantics is closely related to the interpretation of the Beth tableau
[63]. Van Benthem [65] suggested the relationship for the consequence relation to a tableau
calculus. We begin by recalling the basic idea of the Beth tableau. The Beth tableau proves
X → Y by constructing a counterexample of X & ∼Y . The Beth tableaux has several partial
features. For instance, there may be counterexamples even if a branch remains open. This
insight led van Benthem [65] to work out partial semantics for classical logic. In the Beth
tableau, it is assumed that V is a partial valuation function that assigns the values 0 or 1 to
an atomic formula p. We can then set V(p) = 1 for p on the left-hand side and V(p) = 0 for
p on the right-hand side in an open branch of tableaux.
Analytic Tableaux

We describe analytic tableaux which is a variant of the "semantic tableaux" according
to Smullyan [63]. Our present formulation is virtually that which we introduced in [1]. The
basic idea of tableau calculi derives from Gentzen [27]. We begin by noting that under any
interpretation the following eight inference rules hold for any formulas X , Y :
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1) a) If ∼ X is true, then X is false.
b) If ∼ X is false, then X is true.

2) a) If a conjunction X ∧ Y is true, then X , Yare both true.
b) If a conjunction X ∧ Y is false, then either X is false or Y is false.

3) a) If a disjunction X ∨ Y is true, then either X is true or Y is true.
b) If a disjunction X ∨ Y is false, then both X , Y are false.

4) a) If X → Y is true, then either X is false or Y is true.
b) If X → Y is false, then X is true and Y is false.

These eight facts provide the basis of the tableau method.
Signed Formulas. At this stage it will prove useful to introduce the symbols “T", “F" to

the object language, and define a signed formula as an expression T X or FX , where X is a
(unsigned) formula. We read “T X" as “X is true" and “FX" as “X is false".

Definition 4.5. Under any interpretation, a signed formula T X is called true if X is true,
and false if X is false. And a signed formula FX is called true if X is false, and false if X is
true. Thus the truth value of T X is the same as that of X; the truth value of FX is the same
as that of ∼ X . By the conjugate of a signed formula we mean the result of changing “T" to
“F" or “F" to “T" (thus the conjugate of T X is FX; the conjugate of FX is T X).

Rules for the Construction of Tableaux.
We now state all the rules in schematic form; explanations immediately follow. For each
logical connective there are two rules; one for a formula preceded by “T", the other for a
formula preceded by “F":

1) T∼X
FX

F∼X
T X

2) T(X ∧ Y )
T X
TY

F(X ∧ Y )
FX | FY

3) T(X ∨ Y )
T(X | Y )

F(X ∨ Y )
FX
FY

4) T(X → Y )
FX | TY

F(X → Y )
T X
FY

Rule 1) means that from T∼X we can directly infer FX (in the sense that we can subjoin
FX to any branch passing through T∼X) and that from F∼X we can directly infer T X . Rule
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2) means that T(X ∧ Y ) directly yields both T X , TY , whereas F(X ∧ Y ) branches into FX ,
FY . Rules 3) and 4) can now be understood analogously.

Signed formulas, other than signed variables, are of two types;
(A) those which have direct consequences (viz. F∼X , T∼X , T(X∧Y ), F(X∨Y ), F(X → Y );
(B) those which branch (viz. F(X ∧ Y ), T(X ∨ Y ), T(X → Y ).

It is practically desirable in constructing a tableau, that when a line of type (A) appears on
the tableau, we simultaneously subjoin its consequences to all branches which pass through
that line. Then that line need never be used again. And in using a line of type (B), we divide
all branches which pass through that line into sub-branches, and the line need never be used
again.

If we construct a tableau in the above manner, it is not difficult to see, that after a finite
number of steps we must reach a point where .every line has been used (except of course, for
signed variables, which are never used at all to create new lines). At this point our tableau
is complete (in a precise sense which we will subsequently define).

One way to complete a tableau is to work systematically downwards i.e. never to use a
line until all lines above it (on the same branch) have been used. Instead of this procedure,
however, it turns out to be more efficient to give priority to lines of type (A)—i.e. to use up
all such lines at hand before using those of type (B). In this way, one will omit repeating the
same formula on different branches; rather it will have only one occurrence above all those
branch points.

As an example of both procedures, let us prove the formula [p → (q → r)] → [(P →
q) → (p → r)]. The first tableau works systematically downward; the second uses the
second suggestion. For the convenience of the reader, we put to the right of each line the
number of the line from which it was inferred.

It is apparent that Tableau 4.2 is quicker to construct than Tableau 4.1, involving only 13
rather than 23 lines.

The method of analytic tableaux can also be used to show that a given formula is a truth
functional consequence of a given finite set of formulas. Suppose we wish to show that
X → Z is a truth-functional consequence of the two formulas X → Y , Y → Z .

We could, of course, simply show that [(X → Y )∧ (Y → Z)] → (X → Z) is a tautology.
Alternatively, we can construct a tableau starting with

T(X → Y ),
T(Y → Z),
F(X → Z)

and show that all branches close.
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Table 4.1: First Tableau

(1)F[p → (q → r)] → [(p → q) → (p → r)]

(2)T p → (q → r) (1)

(3)F(p → q) → (p → r) (1)

(4) Fp (2) (5) T(q → r) (2)

(6) T(p → q) (3) (8) T(p → q) (3)

(7) F(p → r) (3) (9) F(p → r) (3)

(10) Fp (6) (11) Tq (6) (14) Fq (5) (15) Tr (5)

(12) T p (7) (13) T p (7) (16) Fp (8) (17) Tq (8) (18) Fp (8) (19) Tq (8)

X X (20) T p (9) X (21) T p (9) (22) T p (9)

X X (23) Fr (9)

X

Table 4.2: Second Tableau

(1)F[p → (q → r)] → [(p → q) → (p → r)]

(2)T p → (q → r) (1)

(3)F(p → q) → (p → r) (1)

(4)T(p → q) (3)

(5)F(p → r) (3)

(6)T(p) (5)

(7)F(r) (5)

(8) Fp (2) (9) T(q → r) (2)

X (10) F(p) (4) (10) T(q) (4)

X (14) Fq (5) (15) Tr (5)

X X
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In general, to show that Y is truth-functionally implied by X1, . . . , Xn, we can construct
either a closed analytic tableau starting with F(X1 ∧ . . . ∧ Xn) → Y , or one starting with

T X1
...

T Xn

FY

Tableaux using unsigned formulas. Our use of the letters “T" and “F", though perhaps
heuristically useful, is theoretically quite dispensable - simply delete every “T" and substitute
“∼" for “F". (In which case, incidentally, the first half of Rule 1) becomes superfluous.) The
rules then become:

1) ∼∼X
X

2) X ∧ Y
X
Y

∼(X ∧ Y )
∼X | ∼Y

3) X ∨ Y
X | Y

∼(X ∨ Y )
∼X
∼Y

4) X → Y
∼X | Y

∼(X → Y )
X

∼Y

In working with tableaux which use unsigned formulas, “closing" a branch naturally
means terminating the branch with a cross, as soon as two formulas appear, one of which is
the negation of the other. A tableau is called closed if every branch is closed.

Definition 4.6. (Closed branch) A closed branch is a branch which contains a formula and
its negation (conjugate).

Definition 4.7. (Open branch) An open branch is a branch which is not closed.

Definition 4.8. (Closed tableaux) A tableaux is closed if all its branches are closed.

By a tableau for a formula X , we mean a tableau which starts with X . If we wish to
prove a formula X to be a tautology, we construct a tableau not for the formula X, but for its
negation ∼X .
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A Unifying Notation.
It will save us considerable repetition of essentially the same arguments in our subsequent

development if we use the following unified notation which we introduced in [2].
We use the letter “α" to stand for any signed formula of type A-i.e. of one of the five

forms T(X ∧ Y ), F(X ∨ Y ), F(X → Y ), T∼X , F∼X . For every such formula α, we define
the two formulas α1 and α2 as follows:

If α = T(X ∧ Y ), then α1 = T X and α2 = TY .
If α = F(X ∨ Y ), then α1 = FX and α2 = FY .
If α = F(X → Y ), then α1 = T X and α2 = FY .
If α = T∼X , then α1 = FX and α2 = FX .
If α = F∼X , then α1 = T X and α2 = T X .

For perspicuity, we summarize these definitions in the following table:

α α1 α2

T(X ∧ Y ) T X TY

F(X ∨ Y ) FX FY

F(X → Y ) T X FY

T∼X FX FX

F∼X T X T X

We note that in any interpretation, (α is true iff α1, α2 are both true. Accordingly, we
shall also refer to an (α as a formula of conjunctive type.

We use “β" to stand for any signed formula of type B-i.e. one of the three forms F(X∧Y ),
T(X ∨Y ), T(X → Y ). For every such formula β, we define the two formulas βl, β2 as in the
following table:

β β1 β2

F(X ∧ Y ) FX FY

T(X ∨ Y ) T X TY

T(X → Y ) FX TY

In any interpretation, β is true iff at least one of the pair β1, β2 is true. Accordingly, we
shall refer to any β-type formula as a formula of disjunctive type.

88



4.2. Background

We shall sometimes refer to α1 as the first component of α1 and α2 as the second
component of α. Similarly, for β.

By the degree of a signed formula T X or FX we mean the degree of X . We note that
α1, α2 are each of lower degree than α, and β1, β2 are each of lower degree than β. Signed
variables, of course, are of degree O.

We might also employ an α, β classification of unsigned formulas in an analogous
manner, simply delete all “T", and replace “F" by “∼". The tables would be as shown in
(Table 4.3).

Table 4.3: Rules for unsigned formulas

α α1 α2

X ∧ Y X Y

∼(X ∨ Y ) ∼X ∼Y

∼(X → Y ) X ∼Y

∼∼X X X

β β1 β2

F(X ∧ Y ) FX FY

T(X ∨ Y ) T X TY

T(X → Y ) FX TY

Let us now note that whether we work with signed or unsigned formulas, all our tableaux
rules can be succinctly lumped into the following two:

Rule A – α
α1
α2

Rule B – β

β1 | β2

The Property of Conjugation.
The operation of conjugation obeys the following pleasant symmetric laws:

J0: (a) X distinct from X .

(b) X = X .
J1: (a) The conjugate of any α is some β.

(b) The conjugate of any β is some α.
J2: (a) (α)1 = α1; (α)2 = α2.

(b) (β)1 = β1; (β)2 = β2.

Saturated Set. Let S be a set of unsigned formulas. We leave it to the reader to verify
that S is a truth set if and only if S has the following three properties (for every X, α, β): (0)
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Exactly one of X,∼X belongs to S. (A) α belongs to S if and only if α1, α2 both belong to
S. (B) β belongs to S if and only if at least one of β1, β2 belong to S. We shall refer to a set
S of signed formulas as a valuation set or truth set if it obeys conditions (A), (B) above and
in place of (0), the condition “exactly one of T X, FX belongs to S". We shall also refer to
valuation sets of signed formulas as saturated sets.

Definition 4.9. Tableaux. An analytic tableau for X is an ordered dyadic tree, whose points
are (occurrences of) formulas, which is constructed as follows. We start by placing X at the
origin. Now suppose T is a tableau for X which has already been constructed; let Y be an
end point. Then we may extend T by either of the following two operations.

(A) If some a occurs on the path Py, then we may adjoin either α1 or α2 as the sole
successor of Y . (In practice, we usually successively adjoin α1 and then α2.)

(B) If some P occurs on the path Py, then we may simultaneously adjoin β1 as the left
successor of Y and β2 as the right successor of Y .

The above inductive definition of tableau for X can be made explicit as follows. Given
two ordered dyadic trees T1 and T2, whose points are occurrences of formulas, we call T2 a
direct extension of T1 if T2 can be obtained from T1 by one application of the operation (A)
or (B) above. Then T is a tableau for X iff there exists a finite sequence (T1,T2, . . . ,Tn = T )
such that T1 is a 1-point tree whose origin is X and such that for each i < n,Ti+1 is a direct
extension of Ti.

A branch θ of a tableau for signed (unsigned) formulas is closed if it contains some
signed formula and its conjugate (or some unsigned formula and its negation, if we are
working with unsigned formulas.) And T is called closed if every branch of T is closed.
By a proof of X is meant a closed tableau for FX (or for ∼X , if we work with unsigned
formulas.)

Consistency. It is intuitively rather obvious that any formula provable by the tableau
method must be a tautology–equivalently, given any closed tableau, the origin must be
unsatisfiable.

We have thus shown that any immediate extension of a tableau which is true (under a
given interpretation) is again true (under the given interpretation). From this it follows by
mathematical induction that for any tableauT , if the origin is true under a given interpretation
vo, then T must be true under v0. Now a closed tableau ⊔ obviously cannot be true under any
interpretation, hence the origin of a closed tableau cannot be true under any interpretation -
i. e. the origin of any closed tableau must be unsatisfiable. From this it follows that every
formula provable by the tableau method must be a tautology. It therefore further follows
that the tableau method is consistent in the sense that no formula and its negation are both
provable (since no formula and its negation can both be tautologies).
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Completeness. We now consider the more delicate converse situation: Every tautology
provable by the method of tableaux. Stated otherwise, if X is a tautology, can we be sure
that there exists at least one closed tableau starting with FX? We might indeed ask the
following bolder question: If X is a tautology, then will every complete tableau for FX
close. An affirmative answer to the second question would, of course, be even better than an
affirmative answer to the first, since it would mean that any single completed tableau T for
FX would decide whether X is a tautology or not.

We shall give the proof for tableaux using signed formulas. We are calling a branch e of
a tableau complete if for every α which occurs in θ, both α1 and α2 occur in θ, and for every
β which occurs in θ, at least one of β1, β2 occurs in θ. We call a tableau T completed if
every branch of T is either closed or complete. We wish to show that if T is any completed
open tableau (open in the sense that at least one branch is open), then the origin of T is
satisfiable.

Theorem 4.1. Any complete open branch of any tableau is (simultaneously) satisfiable.
Suppose θ is a complete open branch of a tableau T ; let S be the set of terms of θ. Then

the set S satisfies the following three conditions (for every α, β): H0: No signed variable
and its conjugate are both in S). H1: If α ∈ S, then α1 ∈ S and α2 ∈ S. H2: If β ∈ S, then
β1 ∈ S or β2 ∈ S.

Sets S – whether finite or infinite – obeying conditions H0,H1,H2 are of fundamental
importance – we shall call them Hintikka sets. We shall also refer to Hintikka sets as sets
which are saturated downwards. We shall also call any finite or denumerable sequence θ a
Hintikka sequence if its set of terms is a Hintikka set.

Lemma 4.2 (Hintikka’s Lemma.). Every downward saturated set S (whether finite or infinite)
is satisfiable.

We remark that Hintikka’s lemma is equivalent to the statement that every Hintikka set
can be extended to a (i. e. is a subset of some) saturated set. We remark that Hintikka’s
lemma also holds for sets of unsigned formulas (where by a Hintikka set of unsigned formulas
we mean a set S satisfying H1,H2 and in place of H0, the condition that no variable and its
negation are both elements of S).

Proof. Let S be a Hintikka set. We wish to find an interpretation in which every element of
S is true. Well, we assign to each variable p, which occurs in at least one element of S, a
truth value as follows:

(1) If T p ∈ S, give p the value true. (2) If Fp ∈ S, give p the value false. (3) If neither
T p nor Fp is an element of S, then give p the value true or false at will (for definiteness, let
us suppose we give it the value true.)
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We note that the directions (1), (2) are compatible, since no T p and Fp both occur in S
(by hypothesis H0). We now show that every element of S is true under this interpretation
by induction on the degree of the elements.

It is immediate that every signed variable which is an element of S is true under this
interpretation (the interpretation was constructed to insure just this). Now consider an
element X of S of degree greater than 0, and suppose all elements of S oflower degree than
X are true. We wish to show that X must be true. Well, since X is of degree greater than
zero, it must be either some α or some β.

Case 1. Suppose it is an α. Then α1, α2 must also be in S (by H1). But α1, α2 are of lower
degree than α. Hence by inductive hypothesis α1 and α2 are both true. This implies that α
must be true. Case 2. Suppose X is some β. Then at least one of β1, β2 is in S (by H2).
Whichever one is in S, being of lower degree than β, must be true (by inductive hypothesis).
Hence β must be true. This concludes the proof. □

Theorem 4.3 (Completeness Theorem for Tableaux). (a) If X is a tautology, then every
completed tableau starting with FX must close. (b) Every tautology is provable by the
tableau method. To derive statement (a) from Theorem 4.1, suppose T is a complete tableau
starting with FX . If T is open, then FX is satisfiable (by Theorem 4.1), hence X cannot be
a tautology. Hence if X is a tautology then T must be closed.

Let us note that for S, a finite Hintikka set, the proof of Hintikka’s lemma 4.2 effectively
gives us an interpretation which satisfies S. Therefore, if X is not a tautology, then a
completed tableau for FX provides us with a counterexample of X , in which X is false.

Let us note that for S, a finite Hintikka set, the proof of Hintikka’s lemma 4.2 effectively
gives us an interpretation which satisfies S. Therefore, if X is not a tautology, then a
completed tableau for FX provides us with a counterexample of X (i.e. an interpretation in
which X is false).

4.3 Tableau calculi for Many-valued logics

4.3.1 Relationship with Four-Valued Semantics

Our proposed approach is that replacing the base bivalent logic of decision logic with
alternative versions of decision logic based on a four-valued semantics. To extend the
bivalent semantics of decision logic to a four-valued semantics, we assume a concept of
partial semantics for a consequence relation.
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Partial semantics for classical logic has been studied by van Benthem in the context of
the semantic tableaux [65][63]. Applications of partial semantics for a decision logic of
rough sets are investigated in Nakayama et al. [49]. Let 4 = {T,F,N,B} be the truth value
for the four-valued semantics of DL, where each value is interpreted as true, false, neither
true nor false, and both true and false.

A modelM determines a four-valued assignment v on an atomic formula in the following
way:

∥φ∥v =


T
F
N
B


if |φ,∼φ|S ∩ S =


{φ}
{∼φ}
{∅}
{φ,∼φ}


.

Then, the truth value of φ on an approximation space S = (U, R) is defined as follows:

∥φ∥v =


T if |φ|S ⊆ POSR(U/X)
F if |φ|S ⊆ NEGR(U/X)
N if |φ|S ⊆ BNRβ(U/X)
B if |φ|S ⊆ POSRβ(U/X) ∩ NEGRβ(U/X)

.

,where β is precision ∈ [0, 0.5).
To handle an aspect of partiality on the decision logic, forcing relations for the partial

interpretation are defined for four-valued semantic. The truth values of φ is represented by
the forcing relation as follows:

∥φ∥v = T iff M |=+v φ and M ̸|=−v φ,
∥φ∥v = F iff M ̸|=+v φ and M |=−v φ,
∥φ∥v = N iff M ̸|=+v φ and M ̸|=−v φ,
∥φ∥v = B iff M |=+v φ and M |=−v φ.

A semantic relation for the modelM is defined following Van Benthem [65], Degauquier
[14] and Muskens [47]. The truth (denoted by |=+v ) and the falsehood (denoted by |=−v ) of
the formulas of the language DL of the decision logic in M are defined inductively.

Definition 4.10. The semantic relations of M |=+v φ and M |=−v φ are defined as follows:
M |=+v φ iff φ ∈ M+,
M |=−v φ iff φ ∈ M−,
M |=+v∼ φ iff M |=−v φ,
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M |=−v∼ φ iff M |=+v φ,
M |=+v φ ∨ ψ iff M |=+v φ or M |=+v ψ,
M |=−v φ ∨ ψ iff M |=−v φ and M |=−v ψ,
M |=+v φ ∧ ψ iff M |=+v φ and M |=+v ψ,
M |=−v φ ∧ ψ iff M |=−v φ or M |=−v ψ,
M |=+v φ → ψ iff M |=−v φ or M |=+v ψ,
M |=−v φ → ψ iff M |=+v φ and M |=−v ψ.

The symbol ∼ denotes strong negation, in which is interpreted as true if the proposition is
false. Since validity in B4 is defined in terms of truth preservation, the set of designated
values is {T,B} of 4.

Example 4.3.1. The interpretation of formulas in semantics with B4 is as follows:
U = {x1, x2, . . . , x20}
Attribute: A = {a1, a2, a3, a4, a5, a6}, where a1 = {x1, x2, x3, x4, x5}, a2 = {x6, x7, x8}, a3 =

{x9, x10, x11, x12},
a4 = {x13, x14}, a5 = {x15, x16, x17, x18}, a6 = {x19, x20}.

U/A = a1 ∪ a2 ∪ a3 ∪ a4 ∪ a5 ∪ a6

Any subset X = {x4, x5, x8, x14, x16, x17, x18, x19, x20}
POSA0(X) = a6, where β = 0
POSA0.5(X) = a4 ∪ a5 ∪ a6, where β = 0.5
BNA0.5(X) = a2 ∪ a4 ∪ a5, where β = 0.5
NEGA0(X) = a3, where β = 0
NEGA0.5(X) = a4, where β = 0.5

Evaluation of truth value of formulas as follows:
If |Aa4 |S ⊆ POSA0(X) then ∥Aa4 ∥v = T,
If |Aa3 |S ⊆ NEGA0(X) then ∥Aa3 ∥v = F,
If |Aa2 |S ⊆ BNA0.5(X) then ∥Aa2 ∥v = N,
If |Aa4 |S ⊆ POSA0.5(X) ∩ NEGA0.5(X) then ∥Aa4 ∥v = B.

4.3.2 Many-valued Tableau calculi

Semantic tableaux can be regarded as a variant of Gentzen systems; see Smullyan [63]. The
tableau calculus is used as the proof method for both classical and non-classical logics in
Akama [1] and Priest [58]. The main advantage of the use of the tableau calculus is that
proofs in tableau calculi are easy to understand. In addition, it is possible to provide a
comprehensive argument of completeness proof.
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To accommodate the Gentzen system to partial logics, we need some concepts of partial
semantics. In the Beth tableau, It is assumed that V is a partial valuation function assigning
to an atomic formula p the values 0 or 1. We can then set V(p) = 1 for p on the left-hand
side and V(p) = 0 for p on the right-hand side in an open branch of tableaux.

First, we obtain the following concept of consequence relation (4.1) for a classical logic.

For all V, if V(Pre) = 1 then V(Cons) = 1 (4.1)

Pre and Cons represent sequent premise and conclusion, respectively and 1 represents true
and 0 false.

We use the notion of signed formula. If φ is a formula, then Tφ and Fφ are signed
formulas. Tφ reads φ is provable and Fφ reads φ is not provable, respectively. If S is a set
of signed formulas and α is a signed formula, then we simply define {S, α} for S ∪ {α}. As
usual, a tableau calculus consists of axioms and reduction rules. Let p be an atomic formula
and φ and ψ be formulas.

The tableau rules TCL for (4.1) of a propositional classical logic are:

Axiom:

(ID) {T p, Fp}

Tableau rule:

S,T(∼φ)
S, Fφ (T∼) S, F(∼φ)

S,Tφ (F∼) S,T(φ ∧ ψ)
S,Tφ,Tψ (T∧) S, F(φ ∧ ψ)

S, Fφ; S, Fψ (F∧)

S,T(φ ∨ ψ)
S,Tφ; S,Tψ (T∨) S, F(φ ∨ ψ)

S, Fφ, Fψ (F∨) S,T(φ → ψ)
S,Tφ; S,Tψ (T→) S, F(φ → ψ)

S, Fφ, Fψ (F→)

A proof of a formula φ is showed with a closed tableau for Fφ. A tableau is a tree
constructed by the above reduction rules. A tableau is closed if each branch is closed. A
branch is closed if it contains the axioms of the form (ID) in the classical logic. We write
⊢TCL φ to mean that φ is provable in TCL.

Theorem 4.1. The logic for the consequence relation (4.1) is axiomatized by the tableau
calculus TCL.

Proof. See Smullyan [63], Van Benthem [65], and Akama [3]. □

The tableau calculus TCL∗ is extended TCL excluded rules of (T∼) and (F∼) by in-
troducing axioms of the principle of explosion EFQ (ex falso quodlibet) and the excluded
middle EM, and following rules:
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(EFQ) {T p,T∼p}

(EM) {Fp, F∼p}

S,T(∼(φ ∧ ψ))
S,T(∼φ); S,T(∼ψ) (T∼∧)

S, F(∼(φ ∧ ψ))
S, F(∼φ), F(∼ψ) (F∼∧)

S,T(∼(φ ∨ ψ))
S,T(∼φ),T(∼ψ) (T∼∨)

S, F(∼(φ ∨ ψ))
S, F(∼φ); S, F(∼ψ) (F∼∨)

S,T(∼(φ → ψ))
S,Tφ,T(∼ψ) (T∼→) S, F(∼(φ → ψ))

S, Fφ; S, F(∼ψ) (F∼→)

S,T(∼∼φ)
S,Tφ (T∼∼) S, F(∼∼φ)

S, Fφ (F∼∼)

Next, we extend consequence relation (4.2) for Belnap’s logic B4 as follows:

For all V, if V(Pre) , 0 then V(Cons) , 0. (4.2)

(4.1) and (4.2) are not different as the formulation of classical validity. However, they should
be distinguished for partial semantics with four-valued interpretation. The tableau calculus
TC4 for (4.2) is defined from TCL∗ without (T∼), (F∼), (EFQ) and (EM) as follows:

TC4 := {(ID), (T∧), (F∧), (T∨), (F∨), (T→), (F→), (T∼∧), (F∼∧), (T∼∨), (F∼∨),
(T∼→), (F∼→), (T∼∼), (F∼∼)}.

(4.2) is regarded as a four-valued logic since it allows for incomplete and inconsistent
valuation. As the semantics for TC4, Belnap’s B4 is adopted. We define the extension of
the valuation function v(p) for an atomic formula p as follows:

Definition 4.11. Valuation function v for C4
T =def v(p) = 1 =def v(p) = 1 and v(p) , 0,
F =def v(p) = 0 =def v(p) = 0 and v(p) , 1,
N =def v(p) = {} =def v(p) , 1 and v(p) , 0,
B =def v(p) = {1, 0} =def v(p) = 1 and v(p) = 0.

In this valuation, the law of contradiction fails since if we have p∧¬p in premises, both
p and ¬p are evaluated as B. Additionally, the law of excluded middle fails since if we have
p ∨ ¬p in conclusions, both p and ¬p are evaluated as N.

Now, we try to extend TC4 with weak negation and weak implication. Weak implication
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4.3. Tableau calculi for Many-valued logics

regains the deduction theorem that some many-valued logics lack.
Here, we introduce weak negation “¬”. The semantic relation for weak negation is as

follows:

M |=+v ¬φ iff M ̸|=+v φ,
M |=−v ¬φ iff M |=+v φ.

A semantic interpretation of weak negation is denoted as follows:

∥¬φ∥v =


F if ∥φ∥v = T or B

T if ∥φ∥v = F or N
.

Weak negation can represent the absence of truth and the reading for ¬φ is as “¬φ is not
true”. However, “∼” can serve as strong negation to express the verification of falsity.

Next, weak implication is defined as follows:

φ →w ψ =de f ¬φ ∨ ψ.

A semantic interpretation of weak implication is defined as follows:

∥φ →w ψ∥v =

∥ψ∥v if ∥φ∥v ∈ D
T if ∥φ∥v < D

.

Unlike “→”, weak implication satisfies the deduction theorem. This means that it can
be regarded a logical implication. We can also interpret weak negation in terms of classical
negation and weak implication:

¬φ =de f φ →w ∼φ.

We extend TC4 with weak negation and weak implication as TC4+. So, we define the
tableau rules for (¬) and (→w) as follows:

S,T(¬φ)
S, Fφ (T¬) S, F(¬φ)

S,Tφ (F¬) S,T(φ →w ψ)
S, Fφ; S,Tψ (T→w)

S, F(φ →w ψ)
S,Tφ, Fψ (F→w)

Here, the tableau calculus TC4+ is defined as follows:
TC4+ := {(ID), (T∧), (F∧), (T∨), (F∨), (T→), (F→), (T∼∧), (F∼∧),

(T∼∨), (F∼∨), (T∼→), (F∼→), (T∼∼), (F∼∼), (T¬), (F¬),
(T→wT), (F→w)}.
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TC4+ is interpreted as an extended four-valued logic with weak negation and weak implica-
tion.

Next, we discuss another extension of TC4+. We extend them by adding a unary operator
presented in Epstein[22], which is usually used to represent crispness in the sense of rough
sets. Here, we only describe the definition and semantic interpretation.

©φ =de f ¬¬φ ∨ ¬¬∼φ.

∥©φ∥v =


T if ∥φ∥v = T, F or B

F if ∥φ∥v = N
.

This operator is useful to handle undefined information in decision logic.

4.4 Soundness and Completeness

In this section, the soundness and completeness theorem is showed for the tableau system
TC4+. A proof of a formula φ is a closed tableau for Fφ. A tableau is a tree constructed by
the reduction rules defined in previous section. A tableau is closed if each branch is closed,
where it contains the axiom of the form (ID).

We write ⊢TC4+ φ to mean that φ is provable in TC4+. We see that φ is true iff v(φ) = 1.
φ is valid, written |=TC4+ φ, iff it is true in all four-valued models of Belnap’s logic B4. We
prove the completeness of the tableau calculus TC4+ with respect to Belnap’s four-valued
semantics. The proof strategy is similar to the way sketched in Akama [1].

Let S = {Tφ1, · · · ,Tφn, Fψ1, · · · , Fψm} be a set of signed formula, M be a four-valued
with weak negation model. We say that valuation v refutes S if

v(φi) = 1 if Tφi ∈ S,

v(ψi) , 1 if Fψi ∈ S.

A set S is refutable if something refutes it. If S is not refutable, it is valid.

Theorem 4.2 (Soundness of TC4+). If φ is provable, then φ is valid.

Proof. For any formula φ in TC4+, the following holds:
⊢TC4+ φ iff |=TC4+ φ

If φ is of the form of axioms, it is easy to see that it is valid. For reduction rules, it suffices
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to check that they preserve validity. We only show the cases of (T∼∨) and (F∼→).
(T∼∨): We have to show that if S,T(∼(φ ∨ ψ)) is refutable then S,T(∼φ),T(∼ψ) is also

refutable. By the assumption, there is a semantic relation Definition 4.10, in which valuation
v refutes S and |=+v ∼(φ ∨ ψ). This implies:

v(φ ∨ ψ) , 1 iff v(φ) , 1 and v(ψ) , 1

iff v(φ) = 0 and v(ψ) = 0

iff v(∼φ) = 1 and v(∼ψ) = 1.

Therefore, S,T(∼φ),T(∼ψ) is shown to be refutable.
(F∼→): By the assumption, there is a semantic relation of the weak negation , which

refutes S and |=−v ∼(φ → ψ). This implies:

v(φ → ψ) , 0 iff v(φ) , 1 and v(∼ψ) , 1.

Therefore, S, Fφ and S, F(∼ψ) are refutable. We can show other cases. □

We are now in a position to prove completeness of TC4+. The proof below is similar to
the Henkin proof described in Akama [1], which is extended for paraconsistent logic.

A finite set of signed formulas Γ is non-trivial if no tableau for it is closed. An infinite
set of signed formulas is non-trivial if every finite subset is non-trivial. If a set of formulas
is not non-trivial, it is trivial. Every formula is provable from a trivial set.

Lemma 4.3. Lemma 1. A non-trivial set of signed formulas Γ0 can be extended to a
maximally non-trivial set of signed formulas Γ.

Proof. Since the language L has a countably infinite set of sentences, we can enumerate
sentences φ1, φ2, . . . φn. Now, we define for a non-trivial set of signed formulas Γ0 a sequence
of non-trivial sets of signed formulas Γ0, Γ1, . . . Γn in the following way:

Γn+1 =


Γn ∪ {Tφn+1} if Γn ∪ {Tφn+1} is non-trivial,

Γn ∪ {Fφn+1} if Γn ∪ {Fφn+1} is non-trivial,

Γn otherwise.

Then we obtain:

Γ =
∪
Γi
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It is obvious that Γ satisfies the desired properties of a maximally non-trivial set. □

We here define a canonical model with respect to the tableau TC4+:

Definition 4.12. Based on the maximal non-trivial set, we can define a canonical model
(Γ, ⊆,V) such that Γ is a tableau TC4+, ⊆ is the subset relation, and V is a valuation function
satisfying the condition that V(φ, Γ) = 1 iff φ ∈ Γ and that V(φ, Γ) = 0 iff ∼φ ∈ Γ.

A canonical model for TC4+ satisfies the desired properties of the consequence relation
for four-valued semantics.

Lemma 4.4. For any Γ ∈ S in a canonical model (Γ, ⊆,V) we have the following properties:

(1) if T(φ ∧ ψ) ∈ Γ, then Tφ ∈ Γ and Tψ ∈ Γ,
(2) if F(φ ∧ ψ) ∈ Γ, then Fφ ∈ Γ or Fψ ∈ Γ,
(3) if F(φ ∨ ψ) ∈ Γ, then Tφ ∈ Γ or Tψ ∈ Γ,
(4) if T(φ ∨ ψ) ∈ Γ, then Fφ ∈ Γ and Fψ ∈ Γ,
(5) if T(φ → ψ) ∈ Γ, then Fφ ∈ Γ or Tψ ∈ Γ,
(6) if F(φ → ψ) ∈ Γ, then Tφ ∈ Γ and Fψ ∈ Γ,
(7) if T(∼(φ ∧ ψ)) ∈ Γ, then T(∼φ) ∈ Γ or T(∼ψ) ∈ Γ,
(8) if F(∼(φ ∧ ψ)) ∈ Γ, then F(∼φ) ∈ Γ and F(∼ψ) ∈ Γ,
(9) if T(∼(φ ∨ ψ)) ∈ Γ, then T(∼φ) ∈ Γ and T(∼ψ) ∈ Γ,

(10) if F(∼(φ ∨ ψ)) ∈ Γ, then F(∼φ) ∈ Γ or F(∼ψ) ∈ Γ,
(11) if T(∼∼φ) ∈ Γ, then Tφ ∈ Γ,
(12) if F(∼∼φ) ∈ Γ, then Fφ ∈ Γ,
(13) if T(¬φ) ∈ Γ, then Fφ ∈ Γ,
(14) if F(¬φ) ∈ Γ, then Tφ ∈ Γ,
(15) if T(φ →w ψ) ∈ Γ, then Tφ < Γ or Tψ ∈ Γ,
(16) if F(φ →w ψ) ∈ Γ, then Fφ < Γ and Fψ ∈ Γ.

Proof. See Akama[1]. □

Theorem 4.5. For any Γ ∈ S in a canonical model and any formula φ,
Tφ ∈ Γ iff V(Γ, φ) , 0,
Fφ ∈ Γ iff V(Γ, φ) , 1.

Proof. (We only show the cases of ∧, → and →w.) By induction on a formula Σ. The case
Σ is an atomic formula is immediate.
(1) Σ = φ ∧ ψ (also ∼(φ ∨ ψ)):
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T(φ ∧ ψ) ∈ Γ iff Tφ ∈ Γ and Tψ ∈ Γ
iff V(Γ, φ) , 0 and V(Γ, ψ) , 0
iff V(Γ, φ ∧ ψ) , 0.

F(φ ∧ ψ) ∈ Γ iff Fφ ∈ Γ or Fψ ∈ Γ
iff V(Γ, φ) , 1 or V(Γ, ψ) , 1
iff V(Γ, φ ∧ ψ) , 1.(2) Σ = φ → ψ:

T(φ → ψ) ∈ Γ iff (Fφ ∈ Γ or Tψ ∈ Γ) or
((Tφ ∈ Γ and Fφ ∈ Γ) and
(Tψ < Γ and Fψ < Γ)) or
((Tφ < Γ and Fφ < Γ) and
(Tψ ∈ Γ and Fψ ∈ Γ))

iff (V(Γ, φ) = 0 or V(Γ, ψ) = 1) or
((V(Γ, φ) = 1 and V(Γ, φ) = 0) and
(V(Γ, ψ) , 1 and V(Γ, ψ) , 0)) or
(V(Γ, φ) , 1 and V(Γ, φ) , 0) and
(V(Γ, ψ) = 1 and V(Γ, ψ) = 0))

iff (V(Γ, φ → ψ) = 1.
F(φ → ψ) ∈ Γ iff Tφ ∈ Γ and Fψ ∈ Γ

iff V(Γ, φ) = 1 or V(Γ, ψ) = 0
iff V(Γ, φ → ψ) = 0.(3) Σ = φ →w ψ:

T(φ →w ψ) ∈ Γ iff Tφ < Γ or Tψ ∈ Γ
iff V(Γ, φ) , 1 or V(Γ, ψ) = 1
iff V(Γ, φ →w ψ) = 1.

F(φ →w ψ) ∈ Γ iff Fφ < Γ and Fψ ∈ Γ
iff V(Γ, φ) , 0 and V(Γ, ψ) = 0
iff V(Γ, φ →w ψ) = 0.

□
As a consequence, we show the completeness of TC4+:

Theorem 4.6 (Completeness Theorem). ⊢TC4+ φ iff |=TC4+ φ.

Proof. The soundness was already proved in theorem 2. For the completeness, it suffices to
show that an open tableau is refutable by a counter model by theorem 3. By contraposition,
we show the completeness theorem. □

4.5 Concluding Remarks

In this paper, we have formalized four-valued tableau calculi for decision logic. As semantics
for inconsistent data table, we introduce Belnap’s four-valued logic. Four-valued semantics
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is applied to extend decision logic for inconsistent data table. We also provided Variable
Precision Rough Set to define four-valued semantics for decision logic. Furthermore, we
extend the four-valued tableau calculi with weak negation to repair deduction of four-valued
logic.

There are some topics that can be further developed. First, it is very interesting to apply
another kind of proof system or deduction method to decision logic. We are also interested
to apply another kind of semantics and models to interpret decision logic that includes
inconsistent information. Second, we need to extend the present work for the predicate
logic for decision logic, and also need to show completeness. Third, we need to investigate
application of decision logic with four-valued semantics for inconsistent information.
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Chapter 5

Granular Reasoning for the Epistemic Sit-
uation Calculus

Abstract In Epistemic Situation Calculus called ES proposed by Lakemeyer and Levesque,
by assuming a situation as a possible world, it is possible to interpret an action as a kind of
modality. Moreover, since the state of knowledge of the agent is interpreted by the equiva-
lence relation to the world after the action, knowledge representation based on granulation
is possible. In this paper, we apply granular reasoning to the epistemic situation calculus
by interpreting actions as modalities and granules of possible worlds as states. The zoom
reasoning proposed by Murai et al. is regarded as an epistemic action and is incorporated
into the ES as an abstraction and refinement action by the granularity of the situation. The
relationship between rough sets and semantic interpretation based on Belnap’s four-valued
logic is given as a model of ES, and a model of ES with possible worlds and four-valued
logic is presented.

5.1 Introduction

This chapter is an extended version of Nakayama et al. [51, 48]. Murai et al. [45, 46, 44] have
proposed a framework of granular reasoning called zooming reasoning based on granular
computing. In zooming reasoning, a filtration method is used to control the degree of
granularity based on the rough set. This dynamics feature of the degree of granularity of
zooming reasoning serves the mechanism of dynamic semantic interpretation for abstraction
and refinement. Zooming reasoning is possible to apply for nonmonotonic reasoning as
well.
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In epistemic situation calculus(ES) [36] by Lakemeyer and Levesque, to incorporate the
modal logic into the situation calculus [42, 59], it enables to formulate the epistemic state
of an agent, and the situation is interpreted as a possible world in ES.

The key concept of the zooming reasoning system is focus, which represents sentences we
use in the current step of reasoning. The focus provides “granularized” possible worlds, and
a four-valued valuation where The key concept of the zooming reasoning system is focus,
which represents sentences we use in the current step of reasoning. The focus provides
“granularized” possible worlds, and a four-valued valuation, where the truth value T means
just told True, F means just told False, N means told neither True nor False, and B means
told both True and False. In addition, Murai et al. have provided mechanism of control of
the degree of granularity,

In this research, we extend the possible world in the epistemic situation calculus to the
concept of the granularized possible world, and we incorporate the epistemic pattern of the
abstraction and the refinement with zooming reasoning as an action into ES syntactically.

By capturing the zooming reasoning as actions which change the epistemic state of
an agent, from the perspective of possible worlds and granularization of worlds, on the
framework of the epistemic situation calculus ES, it is natural to incorporate zooming
reasoning, and also it is expected that this enhances the expression power of ES. As the
semantics basis of the zooming reasoning, we discuss that a semantic interpretation by
a four-valued logic of Belnap [10], and the interpretation of modal logic with four-valued
semantics [53]. In addition, as the basis of the deductive system, we utilize the axiomatization
with the sequent calculi using the decision logic of rough set theory.

5.1.1 Related Research

Our research relates the following theories, such as epistemic situation calculus, dynamic
epistemic logic, granular computing, and non-classical logics such as modal logics and many-
valued logics. Besides, we describe related previous researches as follow: In Nakayama et
al. [52], as for the relationship between situation calculus and zooming reasoning based on
granular computing, the deduction system with four-valued logic is studied. Demolombe
[15] proposed a method using explicit frame axioms to give a transformation from situational
calculus to dynamic logic. Ditmarsch et al. [17] studied the correspondece between situation
calculus and Dynamic Epistemic Logic corresponding to Public Announcement Logic. As
for granular reasoning based on modal logic and rough sets, Kudo et al. [35] propose a
granularity-based framework of abduction using variable precision rough set models (VPRS)
and measure-based semantics for modal logic. The relationship between conditional logic
and granular reasoning is discussed in Murai [43], and also their applications are studied.
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In addition, Banihashemi [9] described the high level and low level action theory for the
abstraction for the action theory, and also proposed a mapping method for the high level and
the lowlevel action theory. Nakayama et al. [52] studied the application of many-valued
logics as a basis of a deduction for non-monotonic reasoning in the situation calculus. Akama
et al. [2] surveyed researches in the field of rough sets and granular reasoning.

The structure of this chapter is as follows. In Section 5.2, the outline of epistemic
situation calculus ES is explained, and in Section 5.3, the rough set, its decision logic as
a deductive system, and VPRS are explained. Section 5.4 describes outline of a possible
world model and an application of granular worlds to zooming reasoning, and Section 5.5
outlines deduction systems based on four-valued logic and sequential calculus. Section 5.6
outlines the application of zooming reasoning as an action of ES, and finally summarizes
and discusses future issues.

5.2 Epistemic Situation Calculus

5.2.1 Background of Lakemeyer & Levesque’s logic ES

Here, we describe the outline of the epistemic situation calculus, which incorporates a modal
logic framework into the situation calculus. The situation calculus is a system of the first
order logic for the temporal reasoning where there are two sorts that are the situation s and
the action a and the function do refer the successor situation do(a, s) which is obtained as
the result where the action a is performed at the situation s. The situation is the state of the
world at a specific time, and the quantity which is changed according to the time is called
fluent and represented as the function of the situation. When a fluent is a proposition, its
domain of the fluent is the truth value, and if a function, then its domain is various value;
for example, if it takes a continuous quantity then the domain is a real number [42, 59]. The
situation calculus is based on a discrete and finite transition model.

In the situation calculus, basic elements for the description target is as follow:

• Situations: the complete state of the world at an instantaneous time.
• Fluent: A function with a set of circumstances composed of situations as a domain, a

propositional fluent whose value range is a boolean value, and a situation whose value
range is a situation value is called a contextual fluent.

• Actions: actions performed worldwide. The combination of actions is called a strategy.
For the contextual fluence, a new situation arises as a result of the action performed.
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In addition, the situation calculus defines an action precondition axioms, a successor
state axioms for each action and each fluent. The action precondition axiom defines the
precondition using a specific predicate Poss(a, s), which is required at the execution of an
action on some situation. The parameter a is specified for the action and s the situation. The
successor state axiom is a generalization of the frame axiom and defines a possible result of
a fluent after the execution of an action.

In these descriptions, it is suitable for inferring the influence of action, but it cannot
deduce that it will not be affected. For this reason, a frame axiom is defined to describe that
when a specific action does not change a specific fluent, it does not change.

However, if the frame axiom becomes a large scale, it is difficult for the programmer to
deal with everything appropriately. As an approach to the frame problem, formalization of
the partiality to the dynamic world is essential.

Epistemic situation calculation ES is an extension of situation calculus with epistemic
logic [37], and was proposed by Lakemeyer and Levesque [36].
Language ES: In epistemic situation calculus ES, A is a non-empty action variable, F
is fluent, A is an action constant, predicate Poss (possible), and SF (sensed fluent). The
language LES is represented by the following BNF.

φ ::= p | Poss(t) | SF(t) | t = t | ∼φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | Kφ |
[t]φ | 2φ | ∀xφ

The predicate Poss models executability preconditions of actions. The intuition is that
Poss(a) is used to abbreviate a formula which holds if and only if the action a is executable,
where p ranges over F , t ranges overA∪A, and x overA. The predicate SF is used to model
the result of sensing actions. The formula SF(a) abbreviates a formula whose truth-value is
known by the agent after the execution of a. As in epistemic logics, the operator K models
the agent’s knowledge. The operator [·] is used to model actions. A formula of the form
[a]φ is read that it holds after the execution of a. The formula 2φ is read that it holds after
the execution of any sequence of actions.

5.2.2 Semantics of ES

The main purpose of the semantics of ES is to represent fluents, which may vary as the result
of actions and whose values may be unknown.

Let A∗ be the set of all sequences of actions from A, where [·] denotes the empty sequence
and α ·α∗ is the concatenation of α and α∗. A world w ∈ W is any function from the primitive
sentences and action A to {0, 1}.1

1In Lakemeyer and Levesque[36], ES contains the definition of functional fluent that we do not consider
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Intuitively, to determine whether or not a sentence φ is true after a sequence of actions
z has been performed, for a world w and an epistemic state e, a sentence φ without free
variable is true is written:

e,w, z |= φ

A world determines truth values for the primitive sentences and the primitive terms after
any sequence of actions. An epistemic state is defined by a set of worlds, as in possible
world semantics.

To interpret what is known by the agent after a sequence of actions, Lakemeyer and
Levesque inductively define an indistinguishable relation or agreement relation of two
worlds with respect to a sequence of actions:

1. w′ ≃⟨⟩ w for all w′,w ∈ W

2. w′ ≃z,n w iff w′ ≃z w and w′(SF(n), z) = w(SF(n), z)

That is, w and w′ are indistinguishable after action a if they were so before, and if n’s sensed
fluent has the same value at w and w′ before n.

The semantic relation |= of ES is defined inductively by:

⟨e,w, z⟩ |= φ iff w(φ, z) = 1 if φ is a ground atomic formula.
⟨e,w, z⟩ |= t1 = t2 iff t1 and t2 are identical.
⟨e,w, z⟩ |= ∼φ iff ⟨e,w, z⟩ ̸|= φ.
⟨e,w, z⟩ |= φ ∧ ψ iff ⟨e,w, z⟩ |= φ and ⟨e,w, z⟩ |= ψ.
⟨e,w, z⟩ |= Kφ iff for all w′ ∈ e，if w′ ≃z w then ⟨e,w′, z⟩ |= φ.
⟨e,w, z⟩ |= [n]φ iff ⟨e,w, z · n⟩ |= φ.
⟨e,w, z⟩ |= 2φ iff for all z′ ∈ Z, ⟨e,w, z · z′⟩ |= φ.
⟨e,w, z⟩ |= ∀xφ iff for all n, ⟨e,w, z⟩ |= φ[x\a].

A formula φ ∈ LES is a valid ES consequence of a set of formulas Ψ ⊆ LES, noted
Ψ |=ES φ, if and only if for all e and w, if e,w |= ψ for all ψ ∈ Ψ then e,w |= φ. A formula
φ is ES valid, noted |=ES φ, if and only if ∅ |=ES φ.

Knowledge: All elements of the subset e of given possible worlds need not be true.
In addition, e represents the initial state of knowledge and another knowledge is obtained
according to the execution of an action, and the part of knowledge may become not true.
Therefore the logic of knowledge is assumed to be weak S5 or K45 [37].

here.
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5.2.3 Basic Action Theory

As shown in (Lakemeyer & Levesque 2004), we are able to define basic action theories in a
way very similar to those originally introduced by Reiter:

Definition 5.1. (Basic Action Theory) Given a set of fluent predicates F, a set of sentences
Σ is called a basic action theory over F iff it only mentions the fluents in F and is of the
form Σ = Σ0 ∪ Σpre ∪ Σpost ∪ Σsense, where

1. Σ0 is a finite set of fluent sentences;
2. Σpre contains a single sentence 2Poss(a) ≡ F where F is a fluent formula;
3. Σpost contains a sentence 2F(®x) ≡ γF for all F ∈ F where γF is a fluent formula;
4. Σsense contains a single sentence 2SF(a) ≡ φ where φ is a fluent formula.

The idea here is that Σ0 expresses what is true initially (in the initial situation), Σpre is
one large precondition axiom, and Σpost is a set of successor state axioms, one per fluent,
and Σsense defines the sensing results for actions.

We adopt Basic Action Theory according to Schwering and Lakemeyer [60]. We use
the modal variant of Reiter’s basic action theories to axiomatize a dynamic domain [60]. A
basic action theory over a finite set of fluent F consists of a static and a dynamic part. The
concept of dynamic axioms represents an action precondition (Σpre), changed truth-value of
fluents after actions (Σpost), and knowledge sensed after actions (Σsense):

The successor state axiom of knowledge is represented as follow:

Theorem 5.1. [successor state axiom for knowledge (SSAK)]

|=ES 2([a]K(φ ↔
SF(a) ∧ K(Poss(a) ∧ SF(a) → [a]φ ∨
∼SF(a) ∧ K(Poss(a) ∧ ∼SF(a) → [a]φ).

Proof. For both directions of the equivalence we will only consider the case where ∼SF(n)
holds for an arbitrary action name n. The other case is completely analogous. To prove
the only-if direction, let e,w, z |= [a]K(φ) for action a. Suppose e,w, z |= ∼SF(a). It
suffices to show that e,w, z |= K(Poss(a) ∧ ∼SF(a) → [a]φ). So suppose w′ ≃z w,
w′ ∈ e, w′[Poss(a), z] = 1, and w′[SF(a), z] = 0. Thus w′[SF(a), z] = w[SF(a), z] and,
hence, w′ ≃z·n w. Since e,w, z |= [a]K(φ′) by assumption, e,w′, z, z · a |= φ′, from which
e,w′, z |= [a]φ′ follows.

Conversely, let e,w, z |= ∼SF(a) ∧ K(Poss(a) ∧ ∼SF(a) → [a]φ′. We need to show
that e,w, z |= [a]K(φ′), that is, e,w, z · a |= K(φ′). Let w′ ≃z·a w and w′ ∈ e. Then
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w′[Poss(a), z] = 1 and w′[SF(a), z] = w[SF(a), z] = 0 by assumption Hence e, w′, z |=
Poss(a)∧∼SF(a). Therefore, by assumption, e,w′, z ·a |= φ′, from which e,w, z |= [a]K(φ′)
follows. □

The theorem 5.1 states that an agent already knows a conditional.

5.3 Rough Set and Decision Logic

Here, we briefly review rough set theory and decision logic of rough set. Decision logic
is an application of rough sets to a deduction system and we describe how a deduction is
represented with rough sets.

5.3.1 Rough Set

Rough set theory, proposed by Pawlak [55], provides a theoretical basis of sets based on
approximation concepts. A rough set can be seen as an approximation of a set. Therefore,
rough sets are used for imprecise data handling. The semantic framework for general rough
set theory is denoted by the notion of a knowledge base:

Definition 5.2. A knowledge base is a tuple S = (U,R), where:

• U is a universe of objects;
• R is a set of equivalence relations on objects in U.

With each subset X ⊆ U and an equivalence relation R, we associate two subsets:

Definition 5.3. Let R ∈ R be an equivalence relation of the knowledge base S = (U,R), and
X any subset of U. Then, the lower and upper approximations of X for R are defined as
follows:

RX =def
∪{Y ∈ U/R | Y ⊆ X} = {x ∈ U | [x]R ⊆ X},

RX =def
∪{Y ∈ U/R | Y ∩ X , ∅} = {x ∈ U | [x]R ∩ X , ∅}.

Intuitively, RX is the set of all elements of U that can be certainly classified as elements
of X in the knowledge R, and RX is the set of elements that can be possibly classified as
elements of X in the knowledge R. Then, we can define three types of sets:

Definition 5.4. If S = (U,R) and X ⊆ U, then the R-positive, R-negative, and R-boundary
regions of X with respect to R are defined as follows:
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POSR(X) = RX

NEGR(X) = U − RX
BNR(X) = RX − RX

If the positive and negative regions on a rough set are considered to correspond to the
truth-value of a logical form, then the boundary region corresponds to ambiguity in deciding
truth or falsity.

5.3.2 Decision Logic

In general, targets of rough set data analysis are described by table-style format called
information tables. Formally, an information system is defined as a pair S = (U, A), where
U and A, are finite, nonempty sets called the universe, and the set of attributes, respectively.

With every attribute a ∈ A we associate a set Va, of its values, called the domain of a.
Any subset B of A determines a binary relation IND(B) on U, which is called an

indiscernibility relation, and defined as follows:

IND(B) = {(x, y) ∈ U2 : for every a ∈ B, a(x) = a(y)},

where a(x) denotes the value of attribute a for element x.
IND(B) is assumed as an equivalence relation. The family of all equivalence classes of

IND(B) will be denoted by U/IND(B), or simply by U/B where a partition is determined
by B. A block of the partition U/B containing x will be denoted by B(x).

If (x, y) belongs to IND(B) we will say that x and y are B-indiscernible (indiscernible
with respect to B). Equivalence classes of the relation IND(B) are referred to as B-
elementary sets.

If we distinguish in an information system two disjoint classes of attributes, called
condition and decision attributes, respectively, then the system will be called a decision
table and will be denoted by S = (U,C,D), where C and D are disjoint sets of condition and
decision attributes, respectively.

We review the foundations of rough set-based decision logic [55, 56]. Let S = (U, A) be
an information system. With every B ⊆ A we associate a formal language as follows:

Definition 5.5. The set of formulas of the decision logic language LDL is the smallest set
satisfying the following conditions:

1. (a, v), or in short av, is an atomic formula, where the set of attribute constants is
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defined as a ∈ A and the set of attribute value constants is v ∈ V =
∪

a∈A
Va,

2. If φ and ψ are formulas of the DL, then ∼φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, and φ ≡ ψ are
formulas.

Formulas of LDL are interpreted as subsets of objects consisting of a value v and an
attribute a. An object x ∈ U satisfies a formula φ in S = (U, A), denoted x |=S φ. The
semantic relations of formulas are recursively defined as follows:

x |=S (a, v) iff a(x) = v,
x |=S ∼φ iff x ̸ |=S φ,
x |=S φ ∨ ψ iff x |=S φ or x |=S ψ,
x |=S φ ∧ ψ iff x |=S φ and x |=S ψ,
x |=S φ → ψ iff x |=S ∼φ ∨ ψ,
x |=S φ ≡ ψ iff x |=S φ → ψ and s |=S ψ → φ.

If φ ∈ LDL is a formula then the set |φ|S defined as follows:
|φ|S = {x ∈ U : x |=S φ}

will be called the meaning of the formula φ in S.
Let φ be an atomic formula of LDL , R ∈ C ∪ D an equivalence relation, X any subset of

U, and a valuation v of propositional variables.
Let L be a set of propositional constants of LDL and S : L −→ {T,F} be a valuation

function. Let ∥φ∥S be the interpretation of φ under S:

∥φ∥S =

{
t if |φ|S ⊆ POSR(X)
f if |φ|S ⊆ NEGR(X)

,

where t represents the classical value true, and f represents the classical value false.
A decision table of Pawlak [55] assumes consistency and excludes an inconsistent formula

then it is denoted that the decision logic of Pawlak is based on classical bivalent logic.
The decision table and the decision logic can be utilized to construct a theory of ES by

interpreting an attribute as a fluent. This application of the decision table and the decision
logic is not described in this research and we describe in the future works.

5.3.3 Variable Precision Rough Set

The VPRS models proposed by Ziarko [68] are one extension of Pawlak’s rough set theory,
which provides a theoretical basis to treat probabilistic or inconsistent information in the
framework of rough sets.
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VPRS is based on the majority inclusion relation. Let X , Y ⊆ U be any subsets of U.
The majority inclusion relation is defined by the following measure c(X,Y ) of the relative
degree of misclassification of X with respect to Y .

c(X,Y ) =def


1 − |X ∩ Y |

|X | , if X , ∅,

0, otherwise.
,where |X | represents the cardinality of the set X . It is easy to confirm that X ⊆ Y holds if
and only if cd(X,Y ) = 0.

Formally, the majority inclusion relation
β
⊆ with a fixed precision β ∈ [0, 0.5) is defined

using the relative degree of misclassification as follows:

X
β
⊆ Y iff c(X,Y ) ≤ β,

where the precision b provides the limit of permissible misclassification.
Let X ⊆ U be any set of objects, R be an indiscernibility relation on U, and a

degree β ∈ [0, 0.5) be a precision. The β-lower approximation Rβ(X) of X and the
β-upper approximation Rβ(X) of X by R are respectively defined as follows:

Rβ(X) =def {x ∈ U | c([x]R, X) ≤ β} ,
Rβ(X) =def {x ∈ U | c([x]R, X) < 1 − β} .

As mentioned previously, the precision β represents the threshold degree of misclassification
of elements in the equivalence class [x]R to the set X . Thus, in VPRS, misclassification of
elements is allowed if the ratio of misclassification is less than β. Note that the β-lower and
β-upper approximations with β = 0 correspond to Pawlak’s lower and upper approximations,
respectively.

To follow the traditional notation of the theory of rough sets, the β-lower approximation
will also be called the β-positive region of the set X and denoted alternatively as POSRβ(X).
The β-boundary region and the β-negative region of X are defined as follows:

BNRRβ(X) =def {x ∈ U | β < c([x]R, X) < 1 − β} ,
NEGRβ(X) =def {x ∈ U | c([x]R, X) ≥ 1 − β} .
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5.4 Zooming Reasoning

5.4.1 Kripke Model

Given a set of atomic sentences P, a language LML(P) for modal logic is formed from P
using logical operators ⊤, ⊥, ¬, ∧, ∨, →, ↔, and two kinds of modal operators 2 and 3 as
the least set of sentences generated by the following formation rules:
(1) p∈ P⇒ p ∈ LML(P),
(2) ⊤, ⊥∈ LML(P),
(3) p∈ LML(P) ⇒ ¬p,2p,3p∈ LML(P),
(4) p, q∈ LML(P) ⇒ (p ∧ q), (p ∨ q), (p → q) ∈ LML(P).

We will formulate our idea in the framework of possible world semantics, but, here, we
do not use modal operators. Thus, following Chellas [12], we only assume the structure
⟨W, . . . , v⟩, which we call a Kripke-style model in this paper, where W is a non-empty set
of possible worlds, v : P × W → 0, 1, is a valuation, where 0 and 1 denote, respectively,
false and true, and the ellipsis indicates the possibility of additional elements like a binary
relation in the standard Kripke models. Given a Kripke-style model M = ⟨W, . . . , v⟩, from
a valuation v, a relationship among a model M, a possible world w and an atomic sentence
p, written M,w |= p, is defined by

M,w |= p
de f
⇐⇒ v(p, v) = 1

and it is extended for every compound sentence in the usual inductive way. When we
need to extend it to modal sentences, we must add some elements to the above ellipsis. Let

∥p∥M = {w ∈ W | M,w |= p}

and thus

M,w |= p ⇔ w ∈ ∥p∥M .

5.4.2 Granularized Possible World and Zooming Reasoning

Let us consider a possible-worlds model M = ⟨U, . . . , v⟩, where U is a set of possible
worlds and v is a binary valuation: v : P × U → 0, 1. When we need modal operators,
we introduce either some accessibility relation in case of well-known Kripke models or by
some neighborhood system in case of Scott-Montague models.
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Let P be a set of atomic sentences and LP is the propositional language generated from
P using a standard kind of set of connectives including modal operators in a usual way.

Also, let Γ be a subset of LP and let PΓ be the set of atomic sentences which appears in
each sentence in Γ is denoted as follows:

PΓ ≡ Sn(Γ) ∩ P,

, where Sn(Γ) =
∪

p∈Γ Sn(p) is a subset of p [12].
Here, let RΓ on U be an equivalence relation for any p ∈ PΓ, then we can define an

equivalence relation RΓ on U by
x ∼Γ y iff ∀p ∈ PΓ ,where V(p, x) = V(p, y).
which is called an agreement relation in [12].
Here, we regard the quotient set U/∼Γ for Γ as a set of granularized possible worlds with

respect to Γ, denoted ŨΓ, as
ŨΓ =def U/RΓ = {[x]RΓ | x ∈ U}.

This represents a set of elements of granularized possible worlds in Γ. The valuation of
granularized possible worlds is

VΓ(p, X) = 1 iff p ∈ ∩X，

where p ∈ PΓ，and X ∈ ŨΓ．

In addition, when an accessibility relation R on U and R′ on ŨΓ meet the following
conditions;

• if xRy, then [x]∼ΓR′[y]∼Γ ,

• if [x]∼ΓR′[y]∼Γ , then for all 2p ∈ Γ, M, x |= 2p ⇒ M, y |= p,

• if [x]∼ΓR′[y]∼Γ , for all ∼2∼p ∈ Γ, M, x |= ∼2∼p ⇒ M, y |= p,

then，MR′
Γ
= ⟨UΓ, R′,VΓ⟩ is a filtration of a finite subset of Sn(Γ).

Thus we have a granularization of a set of possible worlds. We also make granularization
of a valuation as follows:

ṽΓ : P × ŨΓ → 2{0,1} .

Here, we obtain a definition of a valuation v as follows [44]:
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Table 5.1: Truth table of Zooming In

Ũ{p,q} p q

∥p∥M ∩ ∥q∥M 1 1

∥p∥M ∩ (∥q∥M)C 1 0

(∥p∥M)C ∩ ∥q∥M 0 1

(∥p∥M)C ∩ (∥q∥M)C 0 0

Table 5.2: Truth table of Zooming Out

Ũ{p} p q

∥p∥M 1 {∅, {1, 0}}
(∥p∥M)C 0 {∅, {1, 0}}

ṽΓ(p, w̃) =



{1}, if v(p,w) = 1 and v(p,w) , 0
for any w ∈ w̃,

{0}, if v(p,w) = 0 and v(p,w) , 1
for any w ∈ w̃,

∅, if v(p,w) , 1 and v(p,w) , 0
for any w ∈ w̃,

{1, 0}, if v(p,w) = 1 and v(p,w) = 0
for any w ∈ w̃.

.

Originally the valuation is defined for three-valued interpretation in Murai [46]. In this
study, we describe a granularization of a valuation based on four-valued semantics in the
following section.

Now we have a granularized model for M with respect to Γ as M̃− =de f ⟨ŨΓ, . . . , ṽΓ⟩.
Based on this valuation, we can define the following partially defined relationship M̃, w̃ |= p.

For two finite subsets Γ′, Γ such that Γ′ ⊆ Γ ⊆ LP , we have RΓ ⊆ RΓ′, so UΓ is a
refinement of UΓ′. Then we call a mapping IΓ

′
Γ

: M̃Γ′ → M̃Γ a zooming in from Γ′ to Γ, and
also call a mapping OΓ

Γ′ : M̃Γ → M̃Γ′ a zooming out from Γ to Γ′.
For example, let {p} = Γ′ ⊆ Γ = {p, q}, then we can make the following zooming in

(Table 5.1) and zooming out (Table 5.2):
In monotonic reasoning case, the following relation is obtained.

∥p∥M ⊆ R{p}(∥q∥M) ⊆ ∥q∥M .

Hence we have

M̃, ∥p∥M |= q
de f
⇐⇒ ∥p∥M ⊆ R{p}(∥q∥M)

.
Secondly, the operation of zooming in from Γ′ to Γ, where Γ′ ⊆ Γ, increases the amount

of information, and we can easily prove
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Γ
′ ⊆ Γ⇒ (M̃Γ′ |= p ⇒ M̃Γ |= p),

which shows monotonicity of reasoning using the lower approximation.

5.5 Consequence Relation for Partial Semantics

5.5.1 Belnap’s Four-Valued Logic

N.D. Belnap first claimed that an inference mechanism for a database should employ a certain
four-valued logic [10]. The important point in Belnap’s system is that we should deal with
both incomplete and inconsistent information in databases. To represent such information,
we need a four-valued logic, since classical logic is not appropriate for the task. Belnap’s
four-valued semantics can in fact be viewed as an intuitive description of internal states of a
computer.

In Belnap’s four-valued logic B4, four kinds of truth-values are used from the set 4 =
{T, F, N, B}. These truth-values can be interpreted in the context of a computer, namely
T means just told True, F means just told False, N means told neither True nor False, and
B means told both True and False. Intuitively, N can be interpreted as undefined and B as
overdefined.

Belnap outlined a semantics for B4 using the logical lattice L4 (the order of ≤t in Fig.5.1)
2, which has negation, conjunction and disjunction as logical connectives. The ordering on
L4 we write as a ≤ b; we write meets as a&b, and joins as a ∨ b. We can now use these
logical operations on L4 to induce a semantics for a language involving &, ∨, and ∼, in just
the usual way.

Belnap’s semantics uses a notion of set-ups mapping atomic formulas into 4 and a set-up
can then be extended for any formula in B4 in the following way:

s(A & B) = s(A) & s(B),
s(A ∨ B) = s(A) ∨ s(B),
s(∼A) = ∼s(A).
Belnap also defined a concept of entailments in B4. We say that A entails B just in case

for each assignment of one of the four values to variables, the value of A does not exceed
the value of B in B4, i.e., s(A) ≤ s(B) for each set-up s. Here, ≤ is transitive and defined
as: F ≤ B, F ≤ N, B ≤ T, N ≤ T. Belnap’s four-valued logic in fact coincides with the

2On 4 one can define two orderings: a truth ordering ≤t and an information ordering ≤i (often referred to
as a knowledge ordering or approximation ordering), presented in the diagram below.
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・・

・
・

F

N

B

T

Figure 5.1: Lattice 4

system of tautological entailments due to Anderson and Belnap [4, 5]. Belnap’s logic B4 is
a paraconsistent logic capable of tolerating contradictions. Belnap also studied implications
and quantifiers in B4 in connection with question-answering systems.

5.5.2 Modal Logic for Four-valued Logic

Here, we assume that an agreement relation ≃⟨⟩ of ES as an equivalent relation RΓ and define
the agreement relation as a neighborhood relation of Scott-Montague model. In addition,
we define a valuation of a formula and a granularized world as follows:

ṽΓ : P × ŨΓ → 2{0,1} .
The elements of the set 4 = {T,F,N,B} can be represented as subsets of the set {0, 1} of

classical truth values:
T = {1},F = {0},N = ∅,B = {0, 1}.
Extended Belnap’s four-valued logic is represented as the following tuple.
B4 := ⟨{4,∧,∨,→,⊥,∼, {T,B}⟩.
We define an N4-model as a triple M = ⟨W, ≤,V⟩, where W is a non-empty set of

possible worlds, ≤ is a preordering on W , and V : Prop × W → 4 is a valuation function
satisfying the following monotonicity condition:

w ≤ w′ ⇒ V(p,w) ≤ V(p,w′).
Next, we represent the model and the interpretation for ES. For granularized possible

worlds, we define the model of four-valued logic ES4 (For simplicity we denote ES) based
on B4.

M̃ = ⟨W̃,≃⟨⟩, Ṽ⟩, where Ṽ : Prop × W̃ → 4.
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We also define the model following two valuations of ṽ+, ṽ− as follows:
M̃ = ⟨W̃,≃⟨⟩, ṽ

+, ṽ−⟩
We define verification and falsification relations for ES [53],

M̃, w̃ |=+ p ⇔ w̃ ∈ ṽ+(p);
M̃, w̃ |=− p ⇔ w̃ ∈ ṽ−(p).

The valuation of a formula of ES is as follows:
1 ∈ Ṽ(p, w̃) ⇔ w̃ ∈ ṽ+(p);
0 ∈ Ṽ(p, w̃) ⇔ w̃ ∈ ṽ−(p).

The semantic relation of a formula is denoted as follows:
1 ∈ Ṽ(p, w̃) ⇔ M̃, w̃ |=+ p;
0 ∈ Ṽ(p, w̃) ⇔ M̃, w̃ |=− p.

Here, we define the valuation of formula in granularized worlds as follows:

Definition 5.6.

ṽΓ(p, w̃) =


{1}, if w̃ ∈ ṽ+(p),
{0}, if w̃ ∈ ṽ−(p),
∅, if w̃ < ṽ+(p) and w̃ < ṽ−(p),
{1, 0}, if w̃ ∈ ṽ+(p) and w̃ ∈ ṽ−(p).

.

5.5.3 Semantic Relation with Four-valued Logic

Here, we define the following semantic relation, which is based on an agreement relation
based on granular reasoning as partial semantics interpretation. To extend the bivalent
semantics of ES to enable the partial interpretation, we assume a four-valued semantics for
agreement relation for the epistemic interpretation of ES.

Let 4 = {T,F,N,B} be truth-value for the four-valued semantics of zooming reasoning
system.

To describe the property of partiality about zooming reasoning, we define the forcing
relation based on four values as semantic relation. Let the formula be p and define a valuation
for formula as follows:

V4(p) =


T iff M̃Γ |=+v p and M̃Γ ̸ |=−v p,

F iff M̃Γ ̸ |=+v p and M̃Γ |=−v p,

N iff M̃Γ ̸ |=+v p and M̃Γ ̸ |=−v p,

B iff M̃Γ |=+v p and M̃Γ |=−v p.

.
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The definition of the valuation for the granularity in VPRS is also defined as the following
valuation corresponding to the inclusion relation of each area of VPRS.

ṽΓ(p, w̃) =


T iff ∥p∥M ⊆ POSR(U/X),
F iff ∥p∥M ⊆ NEGR(U/X),
N iff ∥p∥M ⊆ BNRβ(U/X),
B iff ∥p∥M ⊆ POSRβ(U/X) ∩ NEGRβ(U/X)

.

, where β ∈ [0, 0.5). For B, it may also be interpreted as BNRβ(U/X).
A semantic relation to model M̃Γ is defined as follows:
The semantics such as true and false are denoted as |=+v and |=−v respectively.

Definition 5.7. The semantic relation for M̃ |=+v p and M̃ |=−v p is defined as follows:
M̃Γ, x |=+v p iff p ∈ Ũ+

Γ
,

M̃Γ, x |=−v p iff p ∈ Ũ−
Γ

,
M̃Γ, x |=+v ∼p iff M, x |=−v p,
M̃Γ, x |=−v ∼p iff M, x |=+v p,
M̃Γ, x |=+v p ∨ q iff M̃Γ, x |=+v p or M̃Γ |=+v q,
M̃Γ, x |=−v p ∨ q iff M̃Γ, x |=−v p and M̃Γ |=−v q,
M̃Γ, x |=+v p ∧ q iff M̃Γ, x |=+v p and M̃Γ |=+v q,
M̃Γ, x |=−v p ∧ q iff M̃Γ, x |=−v p or M̃Γ |=−v q,

A logical symbol ∼ means strong negation and it represents true if a proposition is false.
In possible world semantics using Kripke models, we use accessibility relations to

interpret modal sentences. p is true at x if and only if 2p is true at every possible world y

accessible from x. Conversely, 3p is true at x if and only if there is at least one possible
world y accessible from x, and p is true at y. Formally, the interpretation of modal sentences
is defined as follows:

M̃Γ, x |=+v 2p iff ∀y ∈ U(xRy ⇒ M̃, y |=+v p),
M̃Γ, x |=−v 2p iff ∃y ∈ U(xRy and M̃, y |=−v p),
M̃Γ, x |=+v 3p iff ∃y ∈ U(xRy and M̃, y |=+v p),
M̃Γ, x |=−v 3p iff ∀y ∈ U(xRy ⇒ M̃, y |=−v p).
For any sentence p ∈ LML(P), the truth set is the set of possible worlds in which p is

true by the Kripke model M, and the truth set is defined as follows:

∥p∥M def⇐⇒ {x ∈ U |M, x |=+ p}.
(∥p∥M)C def⇐⇒ {x ∈ U |M, x |=− p}.
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M̃Γ, x |=+v 2p iff [x]R ∩ (∥p∥M̃)C = ∅,
M̃Γ, x |=−v 2p iff [x]R ∩ (∥p∥M̃)C , ∅,
M̃Γ, x |=+v 3p iff [x]R ∩ ∥p∥M̃ , ∅,
M̃Γ, x |=−v 3p iff [x]R ∩ ∥p∥M̃ = ∅.

Therefore, when R is an equivalence relation, the following correspondence relationship
holds between Pawlak’s lower approximation and necessity, and that between Pawlak’s upper
approximation and possibility:

R(∥p∥M̃) = ∥2p∥M̃ ,

R(∥p∥M̃) = ∥3p∥M̃ .

A possible world model can be extended to a granularized possible model according to
VPRS and measure-based model [35].

5.5.4 Consequence Relation and Sequent Calculus

Here we describe the consequences based on partial semantics. We define the consequence
relation (C4) Akama[3], Nakayama[49, 50, 52] for the four-valued logic as follows;
(C4) for all V , if V(Pre) , 0, then V(Cons) , 0.

C4 can interpret undefined and inconsistent in addition to true and false and can be
interpreted as a consequence relation for Belnap’s four-valued logic B4. We also define the
assignment function VC4(p) as follows:

As the semantics for C4, Belnap’s B4 is adopted here. We define the extension of the
valuation function VC4(p) for an atomic formula p as follows:

T =def VC4(p) = {1},
F =def VC4(p) = {0},
N =def VC4(p) = {},
B =def VC4(p) = {1, 0}.

Next, we provide the sequent calculus GC4 as the consequence relation C4 to Belnap’s
B4. Let X and Y be set of formulas and let A and B be a formula.
Axiom:

(ID) X,A ⊢GC4 A,Y.
Sequent rule:

(Weakening) X ⊢GC4 Y ⇒ X,A ⊢GC4 A,Y.
(Cut) X,A ⊢GC4 Y and X ⊢GC4 A,Y ⇒ X ⊢GC4 Y.
(∧R) X ⊢GC4 Y, A and X ⊢GC4 Y, B ⇒ X ⊢GC4 Y, A ∧ B.
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(∧L) X, A, B ⊢GC4 Y ⇒ X, A ∧ B ⊢GC4 Y .
(∨R) X ⊢GC4 A,B,Y ⇒ X ⊢GC4 A ∨ B,Y.
(∨L) X,A ⊢GC4 Y and X,B ⊢GC4 Y ⇒ X,A ∨ B ⊢GC4 Y.
(∼∼R) X ⊢GC4 A,Y ⇒ X ⊢GC4 ∼∼A,Y.
(∼∼L) X,A ⊢GC4 Y ⇒ X,∼∼A ⊢GC4 Y.
(∼ ∧ R) X ⊢GC4 ∼A,∼B,Y ⇒ X ⊢GC4 ∼ (A ∧ B),Y .
(∼ ∧ L) X,∼A ⊢GC4 Y and X,∼B ⊢GC4 Y ⇒ X,∼(A ∧ B) ⊢GC4 Y .
(∼ ∨ R) X ⊢GC4 ∼A,Y and X ⊢GC4 ∼B,Y ⇒ X ⊢GC4 ∼(A ∨ B),Y.
(∼ ∨ L) X,∼A,∼B ⊢GC4 Y ⇒ X,∼(A ∨ B) ⊢GC4 Y.

Here, we add an axiom of safety in Dunn [21] to GC4.
(Safety) X, A, ∼A ⊢GC4 B,∼B, Y.

As a result, even if a contradiction is deduced, the system does not become trivial, and
appropriate conclusions can be deduced.

We also introduce rules for weak negation and weak implication to guarantee the deduc-
tion theorem.

(¬R) X,A ⊢GC4 Y ⇒ X ⊢GC4 ¬A,Y.
(¬L) X ⊢GC4 A,Y ⇒ X,¬A ⊢GC4 Y.
(→wR) X,A ⊢GC4 B,Y ⇒ X ⊢GC4 A→wB,Y.
(→wL) X,B ⊢GC4 Y and X ⊢GC4 A,Y⇒X, A→wB ⊢GC4Y .

The definition of a semantic relation of weak negation is provided below. Weak negation
represents a lack of truth.

∥¬p∥M =


T if ∥p∥M , T

F otherwise

By the weak implication, modus ponens and deduction theorem hold for four-valued logic.

5.6 Zooming Reasoning as Action

5.6.1 Zooming Reasoning in ES

Here, we consider zooming reasoning as an action of ES and zooming out is regarded
as an abstraction and zooming in is regarded as a refinement. Then these actions can be
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understood as an epistemic action. In the situation calculus, the value of the fluent is changed
by executing the action. For a propositional fluent, truth-value of fluent is updated by a result
of the action. For sensing in the situation calculus, the agent recognizes the fluent value by
sensing, sensing can be considered as a function for a valuation.

In the situation calculus, the value of the fluent is changed by executing the action. For
a propositional fluent, truth-value of fluent is updated by a result of the action. In addition,
since the agent recognizes the fluent value by sensing, sensing can be considered to function
as a valuation.

Since a granular reasoning copes with finite atomic sentences at each reasoning step,
zooming reasoning is performed by granularizing of possible worlds according to a process
of reasoning. The important point of the zooming reasoning is the focus of reasoning steps.
This is the contact point between the zooming reasoning and the epistemic situation calculus.
From this point, we can overlay the concept of focus on the action logic in ES.

Now, we treat the zooming reasoning as an action of ES and we call as zooming action.
In zooming action, the truth value of a sentence is determined with regard to the degree of
worlds when the zooming reasoning is executed as an action and the granularity of the world
is changed dynamically.

Zooming action is usual action and it takes propositional fluent as object and mapping
which takes a set of worlds divided by partial atomic formulas. Therefore, zooming action
regards the mapping of zooming in and zooming out as two actions.

In the context of epistemic situation calculus, zooming in and zooming out are captured
in the following process. An agent X has an initial knowledge, and he recognizes the current
situation. When he causes an action for something, he recognizes a set of sentences denoted
Gamma, which is concerned with at a given time, and it is called focus at the time. When
the agent X moves his viewpoint from the focus to another denoted ∆ along time, he must
reconstruct the set of granularized possible worlds. It is considered that Γ is the current
focus, and ∆ is the next or successor focus to which he will move.

More precisely, we describe the process of zooming reasoning according to the action
theory of ES. First, an agent takes attention to the target situation that is a scene of scope
denoted Ξ, which represents target fluent for action. Second, the agent performs zooming
action on the scope of the scene and takes focus Γ which is a set of fluents on the current
reasoning process and successor focus at the next reasoning process.

We introduced two operations of zooming in and zooming out on sets of worlds [44].
For the purpose here, we need to extend the two operations of zooming in and out on models
to describe propositional reasoning as a dynamic process.

A set Γ of formulas we are concerned with at a given time is called a focus and its
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elements focal ones at the time. When we move our viewpoint from one focus to another
along time, we must reconstruct the set of granularized possible worlds. Let Γ be the current
focus and let ∆ be the next focus we will move to.

Definition 5.8. Zooming In and Zooming Out

1. When PΓ ⊇ P∆, we need granularization, which is a mapping IΓ
∆

: UΓ → U∆, where,
for any X in UΓ, IΓ∆ (X) =df {x ∈ U | x ∩ P∆ = (∩X) ∩ P∆. We call this mapping a
zooming out from Γ to ∆.

2. When PΓ ⊆ P∆, we need the inverse operation of granularization, which is a mapping
OΓ
∆

: UΓ → 2U∆ , where OΓ
∆
(X) = {Y ∈ U∆ | (∩Y ) ∩ PΓ = ∩X}. We call this mapping

zooming in from Γ to ∆.

5.6.2 Action Theory for Zooming Reasoning

In the context of situation calculus, we can interpret that zooming reasoning is corresponding
with a basic action theory. An action precondition axioms (APA) are defined to describe
the conditions for the zooming action that are going to be executed. An action of zooming
reasoning requires two sets of formulas called focus, where one is the focus that is paid
attention to in the first process of thinking. We assume this first focus is included in the
scene of the world, and also defined in APA as an initial knowledge. We assume that the
scene is explicitly recognized by an agent. Then the focus transits from the first process of
thinking to the successor process of thinking. We call the second focus on the successor
focus.

In the context of situation calculus, the successor focus is defined in the successor state
axioms (SSA). For focuses, the appropriate granularity is applied for the worlds of models
according to the situation of reasoning processes.

A zooming action is the same as a normal action and it works for a propositional fluent,
and like a zooming reasoning, it is a mapping that takes a set of worlds divided by atomic
subexpressions as arguments.

Let Ξ be the scene for the world where an agent performs reasoning action. And then,
let Γ ⊆ Ξ ⊆ L(P) be a finite set of sentences considered in the current reasoning step.

Here, we incorporate zooming operations in Definition 5.8 as zooming action to ES. As
the first step of zooming reasoning, we define a focus as fluent literals at a given time. For
each situation of the reasoning process, each focus is represented with both Γ for the current
situation and ∆ for the successor situation.

In addition, let ∆ ⊆ Ξ ⊆ L(P) be a finite set of sentences considered in the next
reasoning step. The definition of the scene VS relative to Ξ and the focus VF relative to Γ (∆)
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are as follows:

VS(Ξ) =de f P ∩ sub(Ξ) = PΞ,
VF(Γ) =de f P ∩ sub(Γ) = PΓ.

where sub is the set of all subsentences of sentences defined as follows:

Definition 5.9.

1. sub(Pn = {P⋉}, for n = 0, 1, 2, . . .
2. sub(⊤) = {⊤}.
3. sub(⊥) = {⊥}.
4. sub(¬A) = {¬A} ∪ sub(A).
5. sub(A ∧ B) = {A ∧ B} ∪ sub(A) ∪ sub(B).
6. sub(A ∨ B) = {A ∨ B} ∪ sub(A) ∪ sub(B).
7. sub(A → B) = {A → B} ∪ sub(A) ∪ sub(B).
8. sub(A ↔ B) = {A ↔ B} ∪ sub(A) ∪ sub(B).

Now, we provide the basic action theory for zooming action. The action preconditions
axioms and the successor state axioms for zooming in and zooming out are defined as follows:

Basic Action Theory:

Action Precondition Axiom (APA):
Σpre = {Poss(a) ⇔ Γ ∪ VF(Γ)}, where a = [OΓ

∆
] or [IΓ

∆
].

Successor State Axiom (SSA):
Σpost = {[a]∆⇔ a = b ∧ (∆ ∪ VF(∆))} ,where b = [OΓ

∆
] or [IΓ

∆
].

Sensed Fluent:
Σsense = {SF(a) ⇔ a = b ⇒ φ} ,where b = [OΓ

∆
] or [IΓ

∆
].

For APA and SSA, the zooming out action is required to meet the following condition:
Γ ⊇ ∆ and Γ ∩ ∆ , ∅,

and the zooming in action is required to meet the following condition:
Γ ⊆ ∆ and Γ ∩ ∆ , ∅.
In the situation calculus, SSA is defined for each fluent with positive effect and negative

effect.
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5.6.3 Semantics for Zooming Reasoning in ES

Let Γ be the current focus and let ∆ be the next or successor focus we will move to. For the
zooming out, whenVF(Γ) ⊇ VF(∆), a granularization is required for mappingOΓ

∆
: UΓ → U∆,

where, for any X in UΓ,
OΓ
∆
(X) =de f {x ∈ U |x ∩ VF(∆) = (∩X) ∩ VF(∆)}.

For the zooming in, when VF(Γ) ⊆ VF(∆), an inverse operation of granularization is required
for mapping IΓ

∆
: UΓ → 2U∆ , where, for any X in UΓ,

IΓ
∆
(X) =de f {Y ∈ U∆ |(∩Y ) ∩ VF(Γ) = (∩X)}.

For the zooming reasoning, an atomic sentence p in Ξ and an elementary world at APA
meets the following condition:
Σ |= p ⇔ VΞ(p, x) = 1 and p ∈ x.

When a binary relation R is given on UΞ, we have Kripke model: MΞ = ⟨UΞ, R,VΞ⟩ for the
zooming reasoning.

VF(Γ) (or VF(∆)) is the set of atomic formulas of fluent in Γ and p ∈ Γ and Γ |= p means
that, for any possible world w ∈ W , if M,w |= q for any sentence q ∈ Γ then M,w |= p.

Here, we assume a neighborhood model for an agreement relation. Using truth valuation
function v, we construct agreement relation∼PΓ (∼P∆) based on focus PΓ = VF(Γ) as follows:

x ∼PΓ y ⇔ v(p, x) = v(p, y), where ∀p ∈ VF(Γ).
Agreement relation ∼PΓ therefore induces quotient set W̃ =de f W/∼PΓ of W , i.e., the set

of all equivalence classes of possible worlds in W . We also construct truth valuation ṼPΓ for
equivalence classes of possible worlds x̃ =de f [x]PΓ ∈ W̃ .

An agreement relation for granularized world is represented as follows:
W̃ : (P ∪ Poss(a) ∪ SF(a)) × A∗) → 2{0,1}, where a ∈ A.

Then, we also get the following relation for a granularized world.

1. w̃′ ≃⟨⟩ w̃, for every w̃′ and w̃

2. w̃′ ≃z,a w̃ iff w̃′ ≃z w̃ and w̃′([z]SF(a)) = w̃([z]SF(a)), where a = O∆
Γ
.

The definition of a valuation VPΓ relative to a focus Γ is as follows:

ṼPΓ : VF(Γ) × W̃ → 2{0,1}.
The valuation function for focus on granular worlds for Γ is defined as follow:
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Definition 5.10.

ṼPΓ(p, w̃) =



{1} if p ∈ PΣ and w̃ ∈ W̃,

{0} if p ∈ PΣ and w̃ < W̃,

{1, 0} if p ∈ PΣ and (w̃ ∈ W̃ and w̃ < W̃),
∅ if p < PΣ .

.

It is also clear the following semantic relation:

If for all p ∈ PΓ then VPΓ(p, w̃) = {1},
If for all p < PΓ then VPΓ(p, w̃) = {0}.

In zooming action, the valuation is determined on the granularized world. We denote the
semantic relation with verification and falsification as the valuation based on the four-valued
extended ES.

⟨e,w, z⟩ |=+ [a]p iff ⟨e,w, z · a⟩ |=+ p,
⟨e,w, z⟩ |=− [a]p iff ⟨e,w, z · a⟩ |=− p.

The valuation of formulas is as follows:
1 ∈ Ṽ(p, w̃) ⇔ ⟨e,w, z · a⟩ |=+ p,
0 ∈ Ṽ(p, w̃) ⇔ ⟨e,w, z · a⟩ |=− p.

In zooming action, which is as same as usual action, the following relation holds.
⟨e,w, z⟩ |=ES [IΓ

∆
]p ⇔ ⟨e,w, z · IΓ

∆
⟩ |=ES p,

⟨e,w, z⟩ |=ES [OΓ
∆
]p ⇔ ⟨e,w, z · OΓ

∆
⟩ |=ES p.

The interpretation of zooming action in granularized epistemic world is represented as
follows:

⟨e,w, z⟩ |=ES [IΓ
∆
]p ⇔ ∥p∥M̃ ⊆ R{Γ}(∥p∥M̃),

⟨e,w, z⟩ |=ES [OΓ
∆
]p ⇔ ∥p∥M̃ ⊆ R{∆}(∥p∥M̃).

Zooming out:
An agent performs the reasoning at the abstraction level with an action of zooming out.
Zooming out action is an abstraction in the epistemic world, and performs the zooming out
reasoning at a larger granularized world which arrow vagueness.

If {p} = e2 ⊆ e1 = {p, q}, where E = e1 ∪ e2 then it is shown that [Oe1
e2 ](p → q) holds

as follows:
⟨e1, e2,w, z⟩ |=ES [Oe1

e2 ] (p → q).
This can be read as “generally” or “typically” p → q, and also represented semantically

as follows:
̸ |=−ES [Oe1

e2 ]p or |=+ES [Oe1
e2 ]q.
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ଵ ଶ

Refinement

Abstraction

Figure 5.2: Zooming Action in Epistemic World

As the truth value of q is interpreted as ṽΓ(q, w̃) = {0, 1}, above reasoning holds. In
addition, this interpretation is deduced from Table 5.1.

Furthermore, let p be antecedent, and q consequent. Since designated value{T, B} is
held at the valuation of e1 and e2 in zooming out, this reasoning is valid on the four-valued
logic.
Zooming in:
An agent performs the reasoning at the refinement level with an action of zooming in.
Zooming in action is refinement in the epistemic world, and performs the reasoning at a
relative subdivided granularized world which enables concrete reasoning. If {p} = e2 ⊆
e1 = {p, q}, where E = e1 ∪ e2 then it is shown that [Oe1

e2 ](p → q) holds as follows:
Therefore, it is shown that [Ie2

e1 ](p → q) holds as follows:
⟨e2, e1,w, z⟩ |=ES [Ie2

e1 ] (p → q).
This can be read as “concretely” or “specifically” p → q, and also represented semantically
as follows:

|=+ES [Ie2
e1 ]p and |=+ES [Ie2

e1 ]q.
,and

|=−ES [Ie2
e1 ]q and |=−ES [Ie2

e1 ]p.
Therefore this meets the validity of reasoning in four-valued logic[21].

Fig. 5.2 represents the relationship of epistemic worlds for abstraction and refinement.
We can capture this relation as visibility relation in the epistemic world of an agent.

Example 5.6.1. We assume the following reasoning.
Tweety is a bird; (Most) birds fly.

(Typically) Tweety flies.

while,

Tweety is a penguin; Penguin does not fly.

Tweety does not fly.
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Each variable is defined as follows:
p: bird, q: fly, r: penguin, s: tweety

Zooming out reasoning:
An agent performs zooming out reasoning for epistemic world from e1 = {p, q} to

e2 = {p}. A granularized world is constructed by granularization with {p}. As the initial
knowledge, it is assumed that s ∈ ∥r ∥M, ∥r ∥M ⊆ ∥p∥M

By the zooming out from e1 to e2, reasoning for (typically) bird → fly is represented as
follows:

⟨e1, e2,w, z⟩ |=+ES [Oe1
e2 ] (p → q).

As a semantic relation, it is represented as follows:
⟨e1, e2,w, z⟩ ̸|=−ES [Oe1

e2 ] p or
⟨e1, e2,w, z⟩ |=+ES [Oe1

e2 ] q.
Then, p and q are represented using Ziarko’s inclusion relation [46] as follows:

∥p∥M ∩ Rβ
{bird}(∥q∥

M) , ∅.
The truth value of q is evaluated as ṽΓ(p, w̃) = {0, 1}, then the validity is held in the deduction
of four-valued logic.

Zooming in reasoning:
Suppose a proposition q is added into epistemic world e1ande2, and M, r |= ∼q is added

into the initial knowledge. Then the following interpretation is obtained. ∥r ∥M ⊆ (∥q∥M)C .
Zooming in reasoning is executed for the epistemic world from e2 = {p, r} to e1 =

{p, q, r} as follows: At first, the following possible world is obtained: ŨΓ = {∥r ∥M, ∥p∥M ∩
(∥r ∥M)C, (∥p∥M)C ∩ (∥r ∥M)C}.

Here, the zooming in from e2 to e1, we lead to the following:
⟨e1, e2,w, z⟩ |=ES [Ie2

e1 ](s → ∼q).
This can be evaluated as follows: ṽΓ(p, w̃) = {1}, ṽΓ(q, w̃) = {0}, ṽΓ(r, w̃) = {1}.
,and represented as follows:
⟨e2, e1,w, z⟩ |=+ES [Ie2

e1 ]s and
⟨e2, e1,w, z⟩ |=−ES [Ie2

e1 ]q.

This means that the antecedent is true and the consequent false, then it leads that the
reasoning cannot be held in the concretized world by adding an information r .

The situation of the following example is from Dennett [16].

Example 5.6.2. There was a robot, named RE by its creators. Its designers arranged for it
to learn that its spare battery was put in a room with a time bomb. RE formulated a plan to
rescue its battery. There was a wagon in the room, and the battery was on the wagon, and
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RE plans to pull out the battery being removed from the room.
First, the robot performs zooming out to grasp what to do to rescue its battery and

understood to pull out all things on their wagon. Actually, this causes the bomb went off.
Next, he performs zooming in to realize what not to do to rescue its battery by refinement

of its situation. Then he realizes the bomb next to the battery on the same wagon is explosive.

Abbreviation: batt : battery, ptbl : portable, rsc : rescue, exp : explosion.
The initial database Σ0, first focus Γ and second focus ∆ have the following relation:

Σ0 ⊇ Γ ⊇ ∆
Zooming Out:
Σ0 = {batt, bomb, on-wagon, batt ∧ on-wagon→ptbl,

bomb ∧ on-wagon→ptbl, batt ∧ safe, bomb ∧ ¬safe,
¬safe → ¬ptbl}.

Σpre = {2Poss(O−
· ) ≡ Σ0 ∪ Γ},

where Γ = {batt, bomb, on-wagon}.
Σpost = {2[a]on-wagon ≡ a = O−

· ∧ on-wagon},
where ∆ = {on-wagon}.

Σsense = {2SF(a) ≡ a = OΓ
∆
∧ (batt ∧ wagon) → ptbl ∧

(bomb ∧ wagon) → ptbl.

In zooming out, the battery and bomb are on the same wagon. The agent does not mind
whether the bomb beside the battery in the mind of the focus to the battery. The sensing gets
the agent to decide to move out the wagon with the battery and the bomb at the same time.

Zooming In:
Σ0 = {batt, bomb, on-wagon, batt ∧ on-wagon→ptbl,

bomb ∧ on-wagon→ptbl, batt ∧ safe, bomb ∧ ¬safe,
¬safe → ¬ptbl}.

Σpre = {2Poss(IΓ
∆
) ≡ Σ0 ∪ Γ},

where Γ = {on-wagon}.
Σpost = {[a]exp ≡ a = IΓ

∆ ∧ ptbl ∧ bomb ∨
[a]rsq ≡ a = IΓ

∆ ∧ ptbl ∧ batt},
where ∆ = {on-wagon, batt, bomb, exp}.

Σsense = {2SF(a) ≡ a = IΓ
∆
∧ (batt ∧ wagon) → ptbl ∧

(bomb ∧ wagon) → ¬ptbl}.

In zooming in, the battery and bomb are distinguished on the wagon. The agent recog-
nizes the bomb the wagon, and also, the bomb is not safe to bring out with the battery. The
sensing gets the agent to deduce not to move out the wagon with the battery and the bomb at
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the same time.

5.7 Conclusion

In this chapter, we studied a basic framework in which we incorporate the zooming reasoning
based on granular computing into the epistemic situation calculus. In ES, for the action can
be regarded as the modal operator, then we treat zooming reasoning as a modal operator,
and this enables us to provide the interpretation for the dynamic change of granularity for
a world. In addition, we provided the interpretation for the non-monotonic reasoning using
zooming reasoning by the semantic relation of four-valued logic. We can construct the
deduction system to deduce the relevant result without corruption as a logical system when
the inconsistent result is deduced.
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Chapter 6

Discussion

6.1 Re-examination of Frame Problem in the Context of

Granular Reasoning

Here we describe the challenges and countermeasures in the frame problem.

6.1.1 Frame Problem

Axiomatizing Actions in the Situation Calculus
We can observe about actions is that they have preconditions: requirements that must

be satisfied whenever they can be executed in the current situation. A predicate symbol
Possisintroduced; Poss(a, s) means that it is possible to perform the action a in that state
of the world resulting from performing the sequence of actions s.
Here are some examples:

• If it is possible for a robot r to pick up an object x in situation s, then the robot is not
holding any object, it is next to x, and x is not heavy:

Poss(pickup(r, x), s) → [(∀z)¬holding(r, z, s)] ∧ heavy(x) ∧ nextTo(r, x, s).

• Whenever it is possible for a robot to repair an object, then the object must be broken,
and there must be glue available:

Poss(repair(r, x), s) → hasGlue(r, s) ∧ broken(x, s).
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The next feature of dynamic worlds that must be described are the causal laws – how
actions affect the values of fluents. These are specified by so-called effect axioms. The
following are some examples:

• The effect on the relational fluent broken of a robot dropping a fragile object:

f ragile(x, s) → broken(xdo(drop(r, x), s)).

This is the situation calculus way of saying that dropping a fragile object causes it to
become broken; in the current situation s, if x is fragile, then in that successor situation
do(drop(r, x), s) resulting from performing the action drop(r, x) in s, x will be broken.

• A robot repairing an object causes it not to be broken:

¬broken(x, do(repair(r, x), s)).

• Painting an object with colour c:

colour(x, do(paint(x, c), s)) = c.

The Qualification Problem for Actions
With only the above axioms, nothing interesting can be proved about when an action is

possible. For example, here are some preconditions for the action pickup:
Poss(pickup(r, x), s) → [(∀z)¬holding(r, z, s)] ∧ ¬(x) ∧ nextTo(r, x, s).
The reason nothing interesting follows from this is clear; we can never infer when a

pickup is possible. We can try reversing the implication:
[(∀z)¬holding(r, z, s)] ∧ ¬heavy(x) ∧ nextTo(r, x, s) → Poss(pickup(r, x), s).
Now we can indeed infer when a pickup is possible, but unfortunately, this sentence is

false. We also need, in the antecedent of the implication:
¬gluedToFloor(x, s) ∧ ¬armsTied(r, s) ∧ ¬hitByTenTonTruck(r, s) ∧ · · ·

i.e., we need to specify all the qualifications that must be true in order for a pickup to be
possible! For the sake of argument, imagine succeeding in enumerating all the qualifications
for pickup. Suppose the only facts known to us about a particular robot R, object A, and
situation S are:

[(∀z)¬holding(R, z, S)] ∧ ¬heavy(a) ∧ nextTo(R, A, S).
We still cannot infer Poss(pickup(R, A), S) because we are not given that the above qual-

ifications are true! Intuitively, here is what we want: When given only that the “important”
qualifications are true:

[(∀z)¬holding(R, z, S)] ∧ ¬heavy(a) ∧ nextTo(R, A, S).
and if we do not know that any of the “minor” qualifications – ¬gluedToFloor(A, S),

¬hitBvTenTonTruck(R, S) – are true, infer Poss(pickup(R, A), S). But if we happen pen
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to know that anyone of the minor qualifications is false, this will block the inference of
Poss(pickup(R, A), S). Historically, this has been seen to be a problem peculiar to reasoning
about actions, but this is not really the case. Consider the following fact about birds, which
has nothing to do with reasoning about actions:

bird(x) ∧ ¬penguin(x) ∧ ¬ostrich(x) ∧ ¬pekingDuck(x) ∧ · · · → f lies(x).
But given only the fact bird(Tweety), we want intuitively to infer f lies(Tweety).

Formally, this is the same problem as action qualifications:

• The important qualification is bird (x).
• The minor qualifications are: ¬penguin(x),¬ostrich(x), · · ·

This is the classical example of the need for nonmonotonic reasoning in artificial in-
telligence. For the moment, it is sufficient to recognize that the qualification problem for
actions is an instance of a much more general problem, and that there is no obvious way to
address it. We shall adopt the following (admittedly idealized) approach: Assume that for
each action A(x), there is an axiom of the form

Poss(A(®(x), s) ≡ ΠA(®x, s),
where Poss(A(®(x), s) is a first-order formula with free variables x, s that does not mention

the function symbol do. We shall call these action precondition axioms. For example:
Poss(pickup(r, x), s) ≡ [(∀z)¬holding(r, z, s)] ∧ ¬heavy(x) ∧ nextTo(r, x, s).
In other words, we choose to ignore all the “minor” qualifications, in favour of necessary

and sufficient conditions defining when an action can be performed.

6.1.2 Solution of Frame Problem with the Situation Calculus

There is another well known problem associated with axiomatizing dynamic worlds; axioms
other than effect axioms are required. These are called frame axioms, and they specify
the action invariants of the domain, i.e., those fluents unaffected by the performance of an
action. For example, the following is a positive frame axiom, declaring that the action of
robot r′ painting object x′ with colour c has no effect on robot r holding object x:

holding(r, x, s) → holding(r, x, do(print(r′, x′), s)).
Here is a negative frame axiom for not breaking things:
¬broken(x, s) ∧ [x , y ∨ ¬ f ragile(x, s)] → ¬broken(x, do(drop(r, y), s)).
Notice that these frame axioms are truths about the world, and therefore must be included

in any formal description of the dynamics of the world.
The problem is that there will be a vast number of such axioms because only relatively

few actions will affect the value of a given fluent. All other actions leave the fluent invariant,
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for example: An object’s colour remains unchanged after picking something up, opening a
door, turning on a light, electing a new prime minister of Canada, etc.

Since, empirically in the real world, most actions have no effect on a given fluent, we
can expect of the order of 2 ×A × F frame axioms, where A is the number of actions, and
F the number of fluents.

These observations lead to what is called the frame problem:

1. The axiomatizer must think of, and write down, all these quadratically many frame
axioms. In a setting with 100 actions and 100 fluents, this involves roughly 20, 000
frame axioms.

2. The implementation must somehow reason efficiently in the presence of so many
axioms.

Suppose the person responsible for axiomatizing an application domain has specified all
the causal laws for that domain. More precisely, she has succeeded in writing down all the
effect axioms, i.e. for each relational fluent F and each action A that causes F’s truth value
to change, axioms of the form:

R(®x, s) → (¬)F(®x, do(A, s)),
and for each functional fluent f and each action A that can cause f ’s value to change,

axioms of the form:
R(®x, y, s) → f (®x, do(A, s)) = y.
Here, R is a first-order formula specifying the contextual conditions under which the

action A will have its specified effect on F and f . There are no restrictions on R, except
that it must refer only to the current situation s. Later, we shall be more precise about
the syntactic form of these effect axioms. A solution to the frame problem is a systematic
procedure for generating, from these effect axioms, all the frame axioms. If possible, we
also want a parsimonious representation for these frame axioms (because in their simplest
form, there are too many of them).

Reiter [59] describe the reason to solution to the frame problem as follows:

• Modularity. As new actions and/or fluents are added to the application domain, the
axiomatizer need only add new effect axioms for these. The frame axioms will be
automatically compiled from these (and the old frame axioms suitably modified to
reflect these new effect axioms).

• Accuracy. There can be no accidental omission of frame axioms.

Frame Axioms: Pednault’s Proposal
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The example illustrates a general pattern. Assume given a set of positive and negative
effect axioms (one for each action A(®y) and fluent F(®x, s)):

ϵ+F (®x, ®y, s) → F(®x, do(A(®y, s)), (6.1a)

ϵ−F (®x, ®y, s) → ¬F(®x, do(A(®y, s)), (6.1b)

Axioms 6.1a and 6.1b specify all the causal laws relating the action A and the fluent F.
With this completeness assumption, we can reason as follows: Suppose that both F(x, s)
and ¬F(®x, do(A(®y), s)) hold. Then because F was true in situation s, action A must have
caused it to become false. By the completeness assumption, the only way A could cause F
to become false is if ϵ−F (®x, ®y, s) were true. This can be expressed axiomatically by:

F(®x, s) ∧ ¬F(®x, do(A(®y), s)) → ϵ−F (®x, ®y, s).
Summary of Pednault’s proposal:

• For deterministic actions, it provides a systematic (and easily and efficiently imple-
mentable) mechanism for

• generating frame axioms from effect axioms. But it does not provide a parsimonious
representation of the frame axioms.

Frame Axioms: The Davis/Haas/Schubert Proposal
Schubert , elaborating on a proposal of Haas, argues in favor of what he calls explanation

closure axioms for representing the usual frame axioms (schubert:1990,haas:1987).

Example 6.1.1. Consider a robot r that is holding an object x in situation s, but is not
holding it in the next situation: Both holding(r, x, s) and ¬holding(r, x, do(a, s)) are true.
How can we explain the fact that holding ceases to be true? If we assume that the only
way this can happen is if the robot r put down or dropped x, we can express this with the
explanation closure axiom:

holding(r, x, s) ∧ ¬holding(r, x, do(a, s)) → a = putDown(r, s) ∨ a = drop(r, s).

This says that all actions other than putDown(r, x) and drop(r, x) leave holding invariant,
which is the standard form of a frame axiom (actually, a set of frame axioms, one for each
action distinct from put Down and drop).

In general, an explanation closure axiom has one of the two forms:
F(®x, s) ∧ ¬F(®x, do(a, s)) → αF(®x, a, s),
¬F(®x, s) ∧ ¬F(®x, do(a, s)) → βF(®x, a, s),
In these, the action variable a is universally quantified. These say that if ever the fluent

F changes truth value, then αF or βF provides an exhaustive explanation for that change. As
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before, to see how explanation closure axioms function like frame axioms, rewrite them in
the logically equivalent form:

F(®x, s) ∧ ¬αF(®x, a, s) → F(®x, do(a, s)),
and
¬F(®x, s) ∧ ¬αF(®x, a, s) → ¬F(®x, do(a, s)).
Schubert argues that explanation closure axioms are independent of the effect axioms,

and it is the axiomatizer’s responsibility to provide them. Like the effect axioms, these
are domain-dependent. In particular, Schubert argues that they cannot be obtained from
the effect axioms by any kind of systematic transformation. Thus, Schubert and Pednault
entertain conflicting intuitions about the origins of frame axioms.

6.1.3 Epistemological Frame Problem

The earliest reference to the Frame Problem from a philosophical point of view was published
in 1987, called “Cognitive Wheels: The Frame Problem of AI” [16].

Dennett [16] appropriates the name “frame problem” to cover more than just the narrow
technical problem defined by McCarthy and Hayes [42]. According to Dennett, the problem
arises from our widely held assumptions about the nature of intelligence and it is “a new,
deep epistemological problem brought by the artificial intelligence, and still being an open
problem”.

Here is a robot scenario from Dennett [16]:

Once upon a time there was a robot, named R1 (...). One day its designers
arranged for it to learn that its spare battery (...) was locked in a room with a
time bomb set to go off soon. R1 located the room (...) and formulated the plan
to rescue the battery. There was a wagon in the room, and the battery was on
the wagon, and R1 hypothesized that a certain action (...) would result in the
battery being removed from the room. Straightway it acted, and did succeed in
getting the battery out of the room before the bomb went off. Unfortunately,
however, the bomb was also on the wagon. R1 knew that the bomb was on the
wagon, but did not realize that pulling the wagon would bring the bomb out
along with the battery.

R1 did not pay attention to the ramifications of his actions. Thus, the designers decided that
R1 must be redesigned to be able to recognize all the implications of his actions.

Our next robot must be made to recognize not just the intended implications
of its acts, but also the implications about their side-effects, by deducing these
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implications from the descriptions it uses in formulating its plans.’ They called
their next model, the robot-deducer, R1D1. They placed R1D1 in much the same
predicament that R1 succumbed to, and (...) it began, as designed, to consider
the implications of such a course of action. It had just finished deducing that
pulling the wagon out of the room would not change the color of the room’s
walls, and was embarking on a proof of the further implication that pulling the
wagon would cause its wheels to turn more revolutions that there were wheels
in the wagon - when the bomb exploded.

This time, R1D1 was equipped with all necessary knowledge to perform the action
correctly, yet it failed to reach the proper conclusion in reasonable amount of time. This,
one might say, is the computational aspect of the frame problem. The obvious way to avoid
it is to appeal to the notion of relevance. Only certain properties are relevant in the context
of any given action and we can confine the deduction only to those.

Back to the drawing board. ’We must teach it the difference between relevant
implications and irrelevant implications,’ said the designers, ’and teach it to
ignore the irrelevant ones.’ So they developed a method of tagging implications
as either relevant or irrelevant to the project at hand, and installed the method
in their next model, the robot-relevant-deducer, or R2D1 for short.

For R2D1 case, the definition of relevancy is needed as a strict discussion. So we cannot
recognize and determine what is relevant in this situation. It seems to be impossible to see
that specifying what propositions are relevant to what context.

The following is pointed out in Gryz [29]. Contexts are not independent of each another,
one needs to appeal to a larger context to determine the significance of elements in a
narrower context (for example, to recognize two dots as eyes in a picture, one must have
already recognized the context as a face). But then, as Dreyfus described: “if each context
can be recognized only in terms of features selected as relevant and interpreted in a broader
context, the AI worker is faced with a regress of contexts” (Dreyfus [19]).

Dreyfus [20] claims that this “extreme version of the frame problem” is no less a
consequence of the Cartesian assumptions of classical AI and cognitive science than its
less demanding relatives [20]. He advances the view that a suitably Heideggerian account
of mind is the basis for dissolving the frame problem here too, and that our “background
familiarity with how things in the world behave” is sufficient, in such cases, to allow us to
“step back and figure out what is relevant and how”. Dreyfus does not explain how, given the
holistic, open-ended, context-sensitive character of relevance, this figuring-out is achieved.

From the situation calculus point of view, The assumption of the initial knowledge of the
robot is as follows:
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• The battery is needed to be rescued.
• The bomb is going to explode and it is dangerous.

We also need to assume initial knowledge like that the number of a wagon is one and the
battery and the bomb are on the wagon, and he knows various behaviors for manipulation.

By this limited situation, we tentatively proposed reasoning the safety with respect to the
bomb using zooming reasoning in Example 5.6.2 in Chapter 5.

6.2 Conclusion

The solution from the situation calculus is limited to the way to describe precondition axiom
and effect axiom for action and fluent and does not cover how to treat the world around an
agent.

For example, Reiter’s approach for the solution of the frame problem is to create a
mechanism which deduces the frame axiom automatically. Such an approach to the frame
problem is based on classical logic in the situation calculus and it cannot resolve the complete
description of the frame axiom for the world. It is impossible to describe all states of the
world in limited physical time for an agent.

As the narrow approach, it is said that technical problem is largely solved, and recent
discussion has tended to focus less on matters of interpretation and more on the implications
of the wider frame problem for cognitive science [61].

Gryz [29] surveyed the frame problem from the original approach of McCarthy and
Hayes [42] to the typical philosophical point of view, e.g. Dennett [16]. Gryz pointed out
that the frame problem is not solved with a logic approach. He described that a more likely
explanation is that after so many failed attempts researchers lost faith that the problem can
be solved by logic. He also describes Rodney Brooks at MIT. Brooks took to heart Dreyfus’s
arguments and attempted to build robots following a different methodological paradigm
(Brooks [11]) that avoids running into the frame problem. The success of this project has
been rather limited, but perhaps the only way to overcome the frame problem is to avoid it
rather than solving it.

In Matsubara et al. [40], it is said that both the description of the situation and inference
is to be solved for the frame problem. Ever since it was first pointed out by McCarthy and
Hayes [42], the frame problem has remained a large concern in the research field of artificial
intelligence and philosophy.

As many philosophers agree, the frame problem is concerned with how an agent may
efficiently filter out irrelevant information in the process of problem-solving. Despite many
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attempts, no completely satisfactory solution has been obtained.
Zooming Reasoning for Frame Problem:

Our point of view of the frame problem is based on the partiality of knowledge of an
agent. The approach to Frame problem from the partiality of epistemic state, this dismissed
the concern of Frame problem.

Zooming reasoning can perform the reasoning as presuppose of limited knowledge,
and can make the granularized rough world that holds for a general interpretation with
abstraction. This leads to the release of an agent to consider complete information about the
actual world. Instead, an agent does not know all the information about the world but the
partial information.

This epistemic perspective enables make of some kind of unconscious worlds instead of
frame axioms. Consider again the following default reasoning example: birds, which has
nothing to do with reasoning about actions:

bird(x) ∧ ¬penguin(x) ∧ ¬ostrich(x) ∧ ¬pekingDuck(x) ∧ · · · → f lies(x).
We do not need to consider these exceptions to describe the general bird. We can interpret
most bird using the action of zooming out.

As for the essential and philosophical frame problem raised by Dennett [16], this remains
still an open problem in AI. Our approach of zooming action as an epistemic action is one
of the challenges and this action can be controlled by an agent intentionally. Therefore, an
agent chooses and focus the target intentionally as its goal to the plan which an agent to
perform.

This does not elucidate the problem raised in Dennett’s robot R2D1 to distinct relevant
implications and irrelevant implications. This problem will still be left to our concerns about
how to describe the relevancy of ontology.
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Chapter 7

Conclusion

7.1 Summary and Achievements

In this thesis, we studied knowledge representation and reasoning based on the granular
reasoning in the framework of the epistemic situation calculus. The concept of partiality and
overcompleteness play an important role in both knowledge representation and reasoning.

We presented the deduction system for partial semantics utilizing the rough set theory for
the basis of knowledge representation and reasoning, and application based on the epistemic
situation calculus ES using granular reasoning.

In Chapters 3 and 4, For incomplete and inconsistent information, we proposed the
consequence relations and axiomatized system with three-valued and four-valued logics and
showed the deduction system with Gentzen Sequent Calculi and Semantic Tableau Calculi.
We axiomatized three-valued and four-valued logics from the partial semantics point of view
and showed the relationship between them using consequence relation. Kleene’s strong
three-valued logic K3 and the logic of paradox LP by Priest are described with consequence
relation and designated value. K3 can cope with incompleteness, and LP inconsistent.
Using semantic tableau, we also showed the two types of three-valued logics Kleene strong
three-valued logic and the logic of paradox as well. In Chapter 5, we introduced the
basic framework to incorporate zooming reasoning based on the granular reasoning into
the epistemic situation calculus ES. We used modal logic with four-valued semantics as the
interpretation of zooming reasoning. We also incorporate zooming reasoning into ES as
epistemic actions, zooming in and out, which are interpreted as abstraction and refinement of
reasoning process respectively. By the four-valued semantics, the system cannot be corrupt
when the inconsistent result is deduced.
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7.2. Future Direction

In Chapter 6, we surveyed and discussed the Frame problem. We do not have the answer
to the Frame problem but we described another point of view by epistemological the Frame
problem which is proposed by Dennett.

7.2 Future Direction

We formulate the mechanism of knowledge update by zooming action and sensing in the
epistemic situation calculus ES and also to reveal the update process of a knowledge base
about the dynamic change of granularity in the model and valuation of information where
the zooming action is performed.

We need to describe what is believed after an agent acquires new information by per-
forming an action or by aware of new information from implicit information. Schwering et
al. [60] studied conditional belief for the preferential belief structure. Beliefs about different
contingencies are expressed through if-then statements so-called conditional beliefs. The
preferential belief structure is initially determined using conditional statements.

For an intelligent agent – a robot, for example – it is important to behave reasonably in
such dynamic and uncertain conditions. The key problem that arises when reasoning about
actions and beliefs is the belief projection problem: Schwering et al. investigate what the
agent believes after a sequence of actions brings about physical or epistemic change.

Murai et al. [43] studied the incomplete and inconsistent feature of conditional logic and
their measure-based extensions based on granular reasoning in the framework of conditional
models. Then paracomplete and paraconsistent aspects of conditionals are examined in the
framework.

The conditional logic with measure-based extensions is suitable to capture the incomplete
and inconsistent aspect of initial and updated knowledge state using conditional belief. This
needs the semantic model for the conditional belief with extended conditional logic and will
be left to our future works.

Furthermore, in another direction, we will study intension in the framework of the
epistemic situation calculus. In the situation calculus, the intention is not treated clearly, but
the meta predicate G of projection of the situation calculus can be interpreted as an action
for the intention. Therefore, we will treat the intention and interpret it as an epistemic action
and another modal operator.
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